
Trevor Sherwin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6745280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Is Keratoconus an Inflammatory Disease? The Implication of Inflammatory Pathways. Ocular Immunology and Inflammation, 2022, 30, 246-255.	1.8	30
2	Differences in sphere-forming cells from keratoconic and normal corneal tissue: Implications for keratoconus pathogenesis. Experimental Eye Research, 2021, 202, 108301.	2.6	2
3	Auckland Cataract Study IV: Practical application of NZCRS cataract risk stratification to reduce phacoemulsification complications. Clinical and Experimental Ophthalmology, 2020, 48, 311-318.	2.6	16
4	Sphere-forming corneal cells repopulate dystrophic keratoconic stroma: Implications for potential therapy. World Journal of Stem Cells, 2020, 12, 35-54.	2.8	4
5	Molecular evidence for the role of inflammation in dry eye disease. Australasian journal of optometry, The, 2019, 102, 446-454.	1.3	33
6	Use of a Purpose-Built Impression Cytology Device for Gene Expression Quantification at the Ocular Surface Using Quantitative PCR and Droplet Digital PCR. Cornea, 2019, 38, 127-133.	1.7	8
7	Stem Cell Spheres for Corneal Regeneration. Essentials in Ophthalmology, 2019, , 299-316.	0.1	1
8	Auckland Cataract Study III: Refining Preoperative Assessment With Cataract Risk Stratification to Reduce Intraoperative Complications. American Journal of Ophthalmology, 2019, 200, 253-254.	3.3	6
9	Auckland Cataract Study III: Refining Preoperative Assessment With Cataract Risk Stratification to Reduce Intraoperative Complications. American Journal of Ophthalmology, 2019, 197, 114-120.	3.3	16
10	One Cell, Two Phenotypes: Capturing Pluripotency for Corneal Regeneration. Essentials in Ophthalmology, 2019, , 145-154.	0.1	0
11	Extreme Descemet's membrane rupture with hydrops in keratoconus: Clinical and histological manifestations. American Journal of Ophthalmology Case Reports, 2018, 10, 271-275.	0.7	8
12	Randomized double-masked trial of eyelid cleansing treatments for blepharitis. Ocular Surface, 2018, 16, 77-83.	4.4	43
13	The Sheep Cornea: Structural and Clinical Characteristics. Current Eye Research, 2018, 43, 1432-1438.	1.5	6
14	New Zealand trends in corneal transplantation over the 25â€years 1991–2015. British Journal of Ophthalmology, 2017, 101, 834-838.	3.9	43
15	Histopathology (from Keratoconus Pathology to Pathogenesis). Essentials in Ophthalmology, 2017, , 25-41.	0.1	2
16	Aberrant Patterns of Key Epithelial Basement Membrane Components in Keratoconus. Cornea, 2017, 36, 1549-1555.	1.7	2
17	The Auckland Cataract Study II: Reducing Complications by Preoperative Risk Stratification and Case Allocation in a TeachingÂHospital. American Journal of Ophthalmology, 2017, 181, 20-25.	3.3	20
18	Implantation of Human Peripheral Corneal Spheres into Cadaveric Human Corneal Tissue. Bio-protocol, 2017, 7, e2412.	0.4	1

#	Article	IF	CITATIONS
19	Defining the Limbal Stem Cell Niche. Journal of Cell Signaling, 2016, 01, .	0.3	1
20	Derivation of Corneal Keratocyte-Like Cells from Human Induced Pluripotent Stem Cells. PLoS ONE, 2016, 11, e0165464.	2.5	32
21	Sphere-forming cells from peripheral cornea demonstrate the ability to repopulate the ocular surface. Stem Cell Research and Therapy, 2016, 7, 81.	5.5	27
22	The Auckland Cataract Study: Assessing Preoperative Risk Stratification Systems for Phacoemulsification Surgery in a Teaching Hospital. American Journal of Ophthalmology, 2016, 171, 145-150.	3.3	36
23	Keratocytes are induced to produce collagen type II: A new strategy for in vivo corneal matrix regeneration. Experimental Cell Research, 2016, 347, 241-249.	2.6	10
24	A COL17A1 Splice-Altering Mutation Is Prevalent in Inherited Recurrent Corneal Erosions. Ophthalmology, 2016, 123, 709-722.	5.2	37
25	Ex vivo and In vivo Evaluation of Chitosan Coated Nanostructured Lipid Carriers for Ocular Delivery of Acyclovir. Current Drug Delivery, 2016, 13, 923-934.	1.6	26
26	AUTOLOGOUS CORNEAL REPAIR USING IN-VITRO ADULT STEM CELL EXPANSION. Journal of Stem Cell and Regenerative Biology, 2016, 2, 1-7.	0.2	0
27	Sphereâ€forming cells from peripheral cornea demonstrate a woundâ€healing response to injury. Cell Biology International, 2015, 39, 1274-1287.	3.0	8
28	Transdifferentiation of chondrocytes into neuronâ€like cells induced by neuronal lineage specifying growth factors. Cell Biology International, 2015, 39, 185-191.	3.0	6
29	Amniotic amulet. Clinical and Experimental Ophthalmology, 2015, 43, 403-404.	2.6	Ο
30	An Immunohistochemical Study of Inflammatory Cell Changes and Matrix Remodeling With and Without Acute Hydrops in Keratoconus. , 2015, 56, 5831.		28
31	Keratoconus: an inflammatory disorder?. Eye, 2015, 29, 843-859.	2.1	261
32	Deficient repair regulatory response to injury in keratoconic stromal cells. Australasian journal of optometry, The, 2014, 97, 234-239.	1.3	21
33	Limbal stem cells: Central concepts of corneal epithelial homeostasis. World Journal of Stem Cells, 2014, 6, 391.	2.8	91
34	Beneficial effect of the antioxidant riboflavin on gene expression of extracellular matrix elements, antioxidants and oxidases in keratoconic stromal cells. Australasian journal of optometry, The, 2014, 97, 349-355.	1.3	18
35	Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors. Experimental Cell Research, 2014, 322, 122-132.	2.6	9
36	A new perspective on the pathobiology of keratoconus: interplay of stromal wound healing and reactive speciesâ€associated processes. Australasian journal of optometry, The, 2013, 96, 188-196.	1.3	50

#	Article	IF	CITATIONS
37	In vivo confocal microscopy of climatic droplet keratopathy. Australasian journal of optometry, The, 2013, 96, 430-432.	1.3	1
38	Keratocyte progenitor cell transplantation: A novel therapeutic strategy for corneal disease. Medical Hypotheses, 2013, 80, 122-124.	1.5	12
39	Sphereâ€forming cells from peripheral cornea demonstrate polarity and directed cell migration. Cell Biology International, 2013, 37, 949-960.	3.0	17
40	Regulation of Connexin43 Gap Junction Protein Triggers Vascular Recovery and Healing in Human Ocular Persistent Epithelial Defect Wounds. Journal of Membrane Biology, 2012, 245, 381-388.	2.1	66
41	Earlyâ€onset Fuchs endothelial dystrophy with a novel pathological phenotype. Clinical and Experimental Ophthalmology, 2012, 40, 320-322.	2.6	2
42	The New Zealand National Eye Bank: Survival and Visual Outcome 1 Year After Penetrating Keratoplasty. Cornea, 2011, 30, 760-764.	1.7	31
43	Comparison of Stem Cell Properties in Cell Populations Isolated From Human Central and Limbal Corneal Epithelium. Cornea, 2011, 30, 1155-1162.	1.7	41
44	Utility and efficacy of <i>TGFBI</i> mutational analysis for disease detection. Expert Review of Molecular Diagnostics, 2010, 10, 569-573.	3.1	0
45	Corneal Epithelial Homeostasis. Ophthalmology, 2010, 117, 190-191.	5.2	5
46	Confocal Microscopy Reveals Zones of Membrane Remodeling in the Outer Cortex of the Human Lens. , 2009, 50, 4304.		36
47	A new niche for the corneal epithelial stem cell. Clinical and Experimental Ophthalmology, 2009, 37, 644-645.	2.6	3
48	Antisense down regulation of connexin31.1 reduces apoptosis and increases thickness of human and animal corneal epithelia. Cell Biology International, 2009, 33, 376-385.	3.0	8
49	Recurrence of Keratoconic Pathology in Penetrating Keratoplasty Buttons Originally Transplanted for Keratoconus. Cornea, 2009, 28, 688-693.	1.7	19
50	Stromal wound healing. , 2009, , 45-56.		5
51	Laser Scanning In Vivo Confocal Analysis of Keratocyte Density in Keratoconus. Ophthalmology, 2008, 115, 845-850.	5.2	101
52	Acute Wound Healing in the Human Central Corneal Epithelium Appears to Be Independent of Limbal Stem Cell Influence. , 2008, 49, 5279.		104
53	Laser Scanning In Vivo Confocal Microscopy Reveals Reduced Innervation and Reduction in Cell Density in All Layers of the Keratoconic Cornea. , 2008, 49, 2964.		130
54	A novel phenotype-genotype relationship with a TGFBI exon 14 mutation in a pedigree with a unique corneal dystrophy of Bowman's layer. Molecular Vision, 2008, 14, 1503-12.	1.1	12

#	Article	IF	CITATIONS
55	Corneal Innervation and Cellular Changes after Corneal Transplantation: An In Vivo Confocal Microscopy Study. , 2007, 48, 621.		115
56	Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study. British Journal of Ophthalmology, 2007, 91, 1165-1169.	3.9	210
57	In Vivo Confocal Microscopy of Subepithelial Infiltrates in Human Corneal Transplant Rejection. Cornea, 2007, 26, 501-504.	1.7	31
58	Teaching of ophthalmology in undergraduate curricula: a survey of Australasian and Asian medical schools. Clinical and Experimental Ophthalmology, 2007, 35, 310-317.	2.6	36
59	Ophthalmology and vision science research. Journal of Cataract and Refractive Surgery, 2006, 32, 334-340.	1.5	0
60	Laser Scanning In Vivo Confocal Microscopy of the Normal Human Corneoscleral Limbus. , 2006, 47, 2823.		99
61	The New Zealand National Eye Bank Study 1991-2003. Cornea, 2005, 24, 576-582.	1.7	67
62	Delivery of antisense oligonucleotides to leukemia cells by RNA bacteriophage capsids. Nanomedicine: Nanotechnology, Biology, and Medicine, 2005, 1, 67-76.	3.3	78
63	Is directed donation misguided?. Clinical and Experimental Ophthalmology, 2004, 32, 5-8.	2.6	4
64	Morphological changes in keratoconus: pathology or pathogenesis. Clinical and Experimental Ophthalmology, 2004, 32, 211-217.	2.6	144
65	Higher-order aberrations of lenticular opacities. Journal of Cataract and Refractive Surgery, 2004, 30, 1642-1648.	1.5	49
66	In search of the clinical scientist. Clinical and Experimental Ophthalmology, 2003, 31, 284-285.	2.6	3
67	Involvement of corneal nerves in the progression of keratoconus. Experimental Eye Research, 2003, 77, 515-524.	2.6	82
68	Cellular Incursion into Bowman's Membrane in the Peripheral Cone of the Keratoconic Cornea. Experimental Eye Research, 2002, 74, 473-482.	2.6	66
69	Differential diagnosis of corneal oedema assisted by in vivo confocal microscopy. Clinical and Experimental Ophthalmology, 2001, 29, 133-137.	2.6	48
70	Microstructural assessment of rare corneal dystrophies using realâ€ŧime <i>in vivo</i> confocal microscopy. Clinical and Experimental Ophthalmology, 2001, 29, 281-285.	2.6	36
71	A Trypanosome Structure Involved in Transmitting Cytoplasmic Information During Cell Division. Science, 2001, 294, 610-612.	12.6	147
72	Cell-cycle and developmental regulation of TbRAB31 localisation, a GTP-locked Rab protein from Trypanosoma brucei. Molecular and Biochemical Parasitology, 2000, 106, 21-35.	1.1	66

#	Article	IF	CITATIONS
73	Architecture of the Trypanosoma brucei nucleus during interphase and mitosis. Chromosoma, 2000, 108, 501-513.	2.2	129
74	Assembly of the Paraflagellar Rod and the Flagellum Attachment Zone Complex During the Trypanosoma brucei Cell Cycle. Journal of Eukaryotic Microbiology, 1999, 46, 105-109.	1.7	255
75	Paraflagellar rod is vital for trypanosome motility. Nature, 1998, 391, 548-548.	27.8	175
76	A motility function for the paraflagellar rod of Leishmania parasites revealed by PFR-2 gene knockouts. Molecular and Biochemical Parasitology, 1997, 90, 95-109.	1.1	100
77	The basics of immunofluorescence video-microscopy for mammalian and microbial systems. Trends in Cell Biology, 1995, 5, 328-332.	7.9	15
78	Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle Journal of Cell Biology, 1995, 128, 1163-1172.	5.2	300
79	[25] Microtubules, tubulin, and microtubule-associated proteins of trypanosomes. Methods in Enzymology, 1991, 196, 285-299.	1.0	84
80	The cell cycle and cytoskeletal morphogenesis in <i>Trypanosoma brucei</i> . Biochemical Society Transactions, 1990, 18, 720-722.	3.4	10
81	Visualization of detyrosination along single microtubules reveals novel mechanisms of assembly during cytoskeletal duplication in trypanosomes. Cell, 1989, 57, 211-221.	28.9	180
82	Subpellicular and flagellar microtubules of Trypanosoma brucei brucei contain the same alpha-tubulin isoforms Journal of Cell Biology, 1987, 104, 431-438.	5.2	108
83	Distinct localization and cell cycle dependence of COOH terminally tyrosinolated alpha-tubulin in the microtubules of Trypanosoma brucei brucei Journal of Cell Biology, 1987, 104, 439-446.	5.2	184