M Hossein Gorji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6744950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fokker–Planck model for computational studies of monatomic rarefied gas flows. Journal of Fluid Mechanics, 2011, 680, 574-601.	3.4	103
2	Fokker–Planck–DSMC algorithm for simulations of rarefied gas flows. Journal of Computational Physics, 2015, 287, 110-129.	3.8	63
3	An efficient particle Fokker–Planck algorithm for rarefied gas flows. Journal of Computational Physics, 2014, 262, 325-343.	3.8	60
4	A Fokker–Planck based kinetic model for diatomic rarefied gas flows. Physics of Fluids, 2013, 25, .	4.0	49
5	Assessment of the cubic Fokker–Planck–DSMC hybrid method for hypersonic rarefied flows past a cylinder. Computers and Fluids, 2018, 168, 1-13.	2.5	29
6	Adaptive particle–cell algorithm for Fokker–Planck based rarefied gas flow simulations. Computer Physics Communications, 2017, 213, 1-8.	7.5	28
7	A Physiologically Relevant, Simple Outflow Boundary Model for Truncated Vasculature. Annals of Biomedical Engineering, 2011, 39, 1470-1481.	2.5	23
8	A Kinetic Model for Gas Mixtures Based on a Fokker-Planck Equation. Journal of Physics: Conference Series, 2012, 362, 012042.	0.4	23
9	A gas-surface interaction kernel for diatomic rarefied gas flows based on the Cercignani-Lampis-Lord model. Physics of Fluids, 2014, 26, .	4.0	18
10	Variance reduction for Fokker–Planck based particle Monte Carlo schemes. Journal of Computational Physics, 2015, 295, 644-664.	3.8	14
11	Comparative Study Between Cubic and Ellipsoidal Fokker–Planck Kinetic Models. AIAA Journal, 2019, 57, 2524-2533.	2.6	14
12	Treatment of long-range interactions arising in the Enskog–Vlasov description of dense fluids. Journal of Computational Physics, 2019, 378, 129-142.	3.8	14
13	Entropic Fokker-Planck kinetic model. Journal of Computational Physics, 2021, 430, 110034.	3.8	11
14	Controlling the bias error of Fokker-Planck methods for rarefied gas dynamics simulations. Physics of Fluids, 2019, 31, 062005.	4.0	10
15	Gaussian Process Regression for Maximum Entropy Distribution. Journal of Computational Physics, 2020, 418, 109644.	3.8	9
16	Coupling kinetic and continuum using data-driven maximum entropy distribution. Journal of Computational Physics, 2021, 444, 110542.	3.8	9
17	A Fokker-Planck model of hard sphere gases based on H-theorem. AIP Conference Proceedings, 2016, , . 	0.4	6
18	Particle number control for direct simulation Monte-Carlo methodology using kernel estimates. Physics of Fluids, 2019, 31, 062008.	4.0	6

M Hossein Gorji

#	Article	IF	CITATIONS
19	Dynamic modelling to identify mitigation strategies for the COVID-19 pandemic. Swiss Medical Weekly, 2021, 151, w20487.	1.6	6
20	Influence of the gas-surface interaction model on time-dependent rarefied gas simulations. Vacuum, 2016, 128, 244-251.	3.5	5
21	Fokker-Planck-Poisson kinetics: multi-phase flow beyond equilibrium. Journal of Fluid Mechanics, 2021, 920, .	3.4	5
22	Accurate particle time integration for solving Vlasov-Fokker-Planck equations with specified electromagnetic fields. Journal of Computational Physics, 2019, 387, 430-445.	3.8	3
23	Smart investment of virus RNA testing resources to enhance Covid-19 mitigation. PLoS ONE, 2021, 16, e0259018.	2.5	3
24	A Device Concept for Demixing of Gas Species Based on Excitation of Internal Energy Modes. , 2013, , .		0
25	A Hybrid Fokker-Planck-DSMC Solution Algorithm for the Whole Range of Knudsen Numbers. , 2013, , .		О