
Christopher A Mebane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6744751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-term monitoring reveals convergent patterns of recovery from mining contamination across 4 western US watersheds. Freshwater Science, 2021, 40, 407-426.	1.8	14
2	Nutrient limitation of algae and macrophytes in streams: Integrating laboratory bioassays, field experiments, and field data. PLoS ONE, 2021, 16, e0252904.	2.5	6
3	Direct and Delayed Mortality of Ceriodaphnia dubia and Rainbow Trout Following Timeâ€Varying Acute Exposures to Zinc. Environmental Toxicology and Chemistry, 2021, 40, 2484-2498.	4.3	4
4	Bioaccumulation and Toxicity of Cadmium, Copper, Nickel, and Zinc and Their Mixtures to Aquatic Insect Communities. Environmental Toxicology and Chemistry, 2020, 39, 812-833.	4.3	61
5	Copper Concentrations in the Upper Columbia River as a Limiting Factor in White Sturgeon Recruitment and Recovery. Integrated Environmental Assessment and Management, 2020, 16, 378-391.	2.9	2
6	Metal Bioavailability Models: Current Status, Lessons Learned, Considerations for Regulatory Use, and the Path Forward. Environmental Toxicology and Chemistry, 2020, 39, 60-84.	4.3	67
7	Time-dependent accumulation of Cd, Co, Cu, Ni, and Zn in natural communities of mayfly and caddisfly larvae: Metal sensitivity, uptake pathways, and mixture toxicity. Science of the Total Environment, 2020, 732, 139011.	8.0	15
8	Adding invasive species biosurveillance to the U.S. Geological Survey streamgage network. Ecosphere, 2019, 10, e02843.	2.2	22
9	Scientific integrity issues in Environmental Toxicology and Chemistry: Improving research reproducibility, credibility, and transparency. Integrated Environmental Assessment and Management, 2019, 15, 320-344.	2.9	29
10	Collaborative research among academia, business, and government. Integrated Environmental Assessment and Management, 2018, 14, 152-154.	2.9	4
11	Understanding the captivity effect on invertebrate communities transplanted into an experimental stream laboratory. Environmental Toxicology and Chemistry, 2018, 37, 2820-2834.	4.3	11
12	Potential Toxicity of Dissolved Metal Mixtures (Cd, Cu, Pb, Zn) to Early Life Stage White Sturgeon (<i>Acipenser transmontanus</i>) in the Upper Columbia River, Washington, United States. Environmental Science & Technology, 2018, 52, 9793-9800.	10.0	10
13	A longâ€ŧerm copper exposure in a freshwater ecosystem using lotic mesocosms: Invertebrate community responses. Environmental Toxicology and Chemistry, 2017, 36, 2698-2714.	4.3	20
14	Larval aquatic insect responses to cadmium and zinc in experimental streams. Environmental Toxicology and Chemistry, 2017, 36, 749-762.	4.3	33
15	Environmental toxicology without chemistry and publications without discourse: Linked impediments to better science. Environmental Toxicology and Chemistry, 2016, 35, 1335-1336.	4.3	1
16	Quantifying Fish Swimming Behavior in Response to Acute Exposure of Aqueous Copper Using Computer Assisted Video and Digital Image Analysis. Journal of Visualized Experiments, 2016, , 53477.	0.3	12
17	Expanding metal mixture toxicity models to natural stream and lake invertebrate communities. Environmental Toxicology and Chemistry, 2015, 34, 761-776.	4.3	37
18	<i>In Response</i> : Biological arguments for selecting effect sizes in ecotoxicological testing—A governmental perspective Environmental Toxicology and Chemistry 2015, 34, 2440-2442	4.3	9

#	Article	IF	CITATIONS
19	Metal Mixture Modeling Evaluation project: 2. Comparison of four modeling approaches. Environmental Toxicology and Chemistry, 2015, 34, 741-753.	4.3	55
20	Recovery of a mining-damaged stream ecosystem. Elementa, 2015, 3, .	3.2	30
21	Acute sensitivity of white sturgeon (<i>Acipenser transmontanus</i>) and rainbow trout (<i>Oncorhynchus mykiss</i>) to copper, cadmium, or zinc in waterâ€only laboratory exposures. Environmental Toxicology and Chemistry, 2014, 33, 2259-2272.	4.3	34
22	Predicting the toxicity of metal mixtures. Science of the Total Environment, 2014, 466-467, 788-799.	8.0	84
23	Evaluation of a combined macrophyte–epiphyte bioassay for assessing nutrient enrichment in the Portneuf River, Idaho, USA. Environmental Monitoring and Assessment, 2014, 186, 4081-4096.	2.7	3
24	Linking nutrient enrichment and streamflow to macrophytes in agricultural streams. Hydrobiologia, 2014, 722, 143-158.	2.0	31
25	Chronic sensitivity of white sturgeon (<i>Acipenser transmontanus</i>) and rainbow trout (<i>Oncorhynchus mykiss</i>) to cadmium, copper, lead, or zinc in laboratory waterâ€only exposures. Environmental Toxicology and Chemistry, 2014, 33, 2246-2258.	4.3	20
26	Acute toxicity of cadmium, lead, zinc, and their mixtures to streamâ€resident fish and invertebrates. Environmental Toxicology and Chemistry, 2012, 31, 1334-1348.	4.3	74
27	Assessing time-integrated dissolved concentrations and predicting toxicity of metals during diel cycling in streams. Science of the Total Environment, 2012, 425, 155-168.	8.0	30
28	Influence of dissolved organic carbon on toxicity of copper to a unionid mussel (<i>Villosa iris</i>) and a cladoceran (<i>Ceriodaphnia dubia</i>) in acute and chronic water exposures. Environmental Toxicology and Chemistry, 2011, 30, 2115-2125.	4.3	32
29	Incubating Rainbow Trout in Soft Water Increased Their Later Sensitivity to Cadmium and Zinc. Water, Air, and Soil Pollution, 2010, 205, 245-250.	2.4	5
30	Relevance of Risk Predictions Derived from a Chronic Species Sensitivity Distribution with Cadmium to Aquatic Populations and Ecosystems. Risk Analysis, 2010, 30, 203-223.	2.7	23
31	Extrapolating Growth Reductions in Fish to Changes in Population Extinction Risks: Copper and Chinook Salmon. Human and Ecological Risk Assessment (HERA), 2010, 16, 1026-1065.	3.4	11
32	Evaluation of acute copper toxicity to juvenile freshwater mussels (fatmucket, <i>Lampsilis) Tj ETQq0 0 0 rgBT /C 28, 2367-2377.</i>	Overlock 10 4.3	0 Tf 50 227 T 24
33	Developing Acute-to-chronic Toxicity Ratios for Lead, Cadmium, and Zinc using Rainbow Trout, a Mayfly, and a Midge. Water, Air, and Soil Pollution, 2008, 188, 41-66.	2.4	55
34	Influence of flow-through and renewal exposures on the toxicity of copper to rainbow trout. Ecotoxicology and Environmental Safety, 2008, 69, 199-208.	6.0	47
35	AN EVALUATION OF FRESHWATER MUSSEL TOXICITY DATA IN THE DERIVATION OF WATER QUALITY GUIDANCE AND STANDARDS FOR COPPER. Environmental Toxicology and Chemistry, 2007, 26, 2066.	4.3	42
36	Sensitivity of mottled sculpins (<i>Cottus bairdi</i>) and rainbow trout (<i>Onchorhynchus) Tj ETQq0 0 0 rgBT /</i>	Overlock 1 4.3	.0 Tf 50 67 To 45

Chemistry, 2007, 26, 1657-1665.

#	Article	IF	CITATIONS
37	The Case for Regime-based Water Quality Standards. BioScience, 2004, 54, 155.	4.9	76
38	An Index of Biological Integrity (IBI) for Pacific Northwest Rivers. Transactions of the American Fisheries Society, 2003, 132, 239-261.	1.4	99
39	Testing bioassessment metrics: macroinvertebrate, sculpin, and salmonid responses to stream habitat, sediment, and metals. , 2001, 67, 293-322.		57