## **Ruth McPherson**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6744082/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Rare coding variants in 35 genes associate with circulating lipid levels—A multi-ancestry analysis of 170,000 exomes. American Journal of Human Genetics, 2022, 109, 81-96.                          | 6.2  | 24        |
| 2  | Common Polymorphism That Protects From Cardiovascular Disease Increases Fibronectin Processing and Secretion. Circulation Genomic and Precision Medicine, 2022, 15, CIRCGEN121003428.                | 3.6  | 5         |
| 3  | Association of muscle fiber type with measures of obesity: A systematic review. Obesity Reviews, 2022, 23, e13444.                                                                                   | 6.5  | 10        |
| 4  | Genetically Determined Reproductive Aging and Coronary Heart Disease: A Bidirectional 2-sample<br>Mendelian Randomization. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e2952-e2961. | 3.6  | 13        |
| 5  | A novel anti-inflammatory role links the CARS2 locus to protection from coronary artery disease.<br>Atherosclerosis, 2022, 348, 8-15.                                                                | 0.8  | 3         |
| 6  | Convergence of biomarkers and risk factor trait loci of coronary artery disease at 3p21.31 and HLA region. Npj Genomic Medicine, 2021, 6, 12.                                                        | 3.8  | 6         |
| 7  | Common Polymorphism in the FADS1 Locus Links miR1908 to Low-Density Lipoprotein Cholesterol<br>Through BMP-1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2252-2262.               | 2.4  | 4         |
| 8  | Epigenome-Wide Study Identified Methylation Sites Associated with the Risk of Obesity. Nutrients, 2021, 13, 1984.                                                                                    | 4.1  | 8         |
| 9  | Interindividual variability in weight loss in the treatment of obesity. American Journal of Clinical<br>Nutrition, 2021, 114, 824-825.                                                               | 4.7  | 3         |
| 10 | Understanding the Function of a Locus Using the Knowledge Available at Single-Nucleotide Polymorphisms. Neurology International, 2021, 11, 255-262.                                                  | 0.5  | 2         |
| 11 | miR1908-5p regulates energy homeostasis in hepatocyte models. Scientific Reports, 2021, 11, 23748.                                                                                                   | 3.3  | 2         |
| 12 | Multiomics Screening Identifies Molecular Biomarkers Causally Associated With the Risk of Coronary<br>Artery Disease. Circulation Genomic and Precision Medicine, 2020, 13, e002876.                 | 3.6  | 9         |
| 13 | RIPK1 gene variants associate with obesity in humans and can be therapeutically silenced to reduce obesity in mice. Nature Metabolism, 2020, 2, 1113-1125.                                           | 11.9 | 34        |
| 14 | Factors affecting weight loss variability in obesity. Metabolism: Clinical and Experimental, 2020, 113, 154388.                                                                                      | 3.4  | 50        |
| 15 | Association of Factor V Leiden With Subsequent Atherothrombotic Events. Circulation, 2020, 142, 546-555.                                                                                             | 1.6  | 11        |
| 16 | Heterozygous <i>ABCG5</i> Gene Deficiency and Risk of Coronary Artery Disease. Circulation Genomic and Precision Medicine, 2020, 13, 417-423.                                                        | 3.6  | 45        |
| 17 | Molecular mechanism linking a novel PCSK9 copy number variant to severe hypercholesterolemia.<br>Atherosclerosis, 2020, 304, 39-43.                                                                  | 0.8  | 3         |
| 18 | <i>SGCG</i> rs679482 Associates With Weight Loss Success in Response to an Intensively Supervised<br>Outpatient Program. Diabetes, 2020, 69, 2017-2026.                                              | 0.6  | 8         |

| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A missense variant in Mitochondrial Amidoxime Reducing Component 1 gene and protection against<br>liver disease. PLoS Genetics, 2020, 16, e1008629.                                                                                                            | 3.5  | 101       |
| 20 | 2018 George Lyman Duff Memorial Lecture. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019,<br>39, 1925-1937.                                                                                                                                           | 2.4  | 6         |
| 21 | Genome-wide identification of circulating-miRNA expression quantitative trait loci reveals the role of<br>several miRNAs in the regulation of cardiometabolic phenotypes. Cardiovascular Research, 2019, 115,<br>1629-1645.                                    | 3.8  | 55        |
| 22 | The selective peroxisome proliferator-activated receptor alpha modulator (SPPARMα) paradigm: conceptual framework and therapeutic potential. Cardiovascular Diabetology, 2019, 18, 71.                                                                         | 6.8  | 104       |
| 23 | Subsequent Event Risk in Individuals With Established Coronary Heart Disease. Circulation Genomic and Precision Medicine, 2019, 12, e002470.                                                                                                                   | 3.6  | 17        |
| 24 | Regulation of MFGE8 by the intergenic coronary artery disease locus on 15q26.1. Atherosclerosis, 2019, 284, 11-17.                                                                                                                                             | 0.8  | 26        |
| 25 | Off-target effects of CRISPRa on interleukin-6 expression. , 2019, 14, e0224113.                                                                                                                                                                               |      | 0         |
| 26 | Off-target effects of CRISPRa on interleukin-6 expression. , 2019, 14, e0224113.                                                                                                                                                                               |      | 0         |
| 27 | Off-target effects of CRISPRa on interleukin-6 expression. , 2019, 14, e0224113.                                                                                                                                                                               |      | 0         |
| 28 | Off-target effects of CRISPRa on interleukin-6 expression. , 2019, 14, e0224113.                                                                                                                                                                               |      | 0         |
| 29 | Partitioning the Pleiotropy Between Coronary Artery Disease and Body Mass Index Reveals the<br>Importance of Low Frequency Variants and Central Nervous System–Specific Functional Elements.<br>Circulation Genomic and Precision Medicine, 2018, 11, e002050. | 3.6  | 16        |
| 30 | Analysis of predicted loss-of-function variants in UK Biobank identifies variants protective for disease. Nature Communications, 2018, 9, 1613.                                                                                                                | 12.8 | 78        |
| 31 | Phenotypic Consequences of a Genetic Predisposition to Enhanced Nitric Oxide Signaling. Circulation, 2018, 137, 222-232.                                                                                                                                       | 1.6  | 87        |
| 32 | ls Type 2 Diabetes in Adults Associated With Impaired Capacity for Weight Loss?. Canadian Journal of<br>Diabetes, 2018, 42, 313-316.e1.                                                                                                                        | 0.8  | 7         |
| 33 | Obesity shows preserved plasma proteome in large independent clinical cohorts. Scientific Reports, 2018, 8, 16981.                                                                                                                                             | 3.3  | 45        |
| 34 | The Cardiovascular Burden of Undiagnosed Familial Hypercholesterolemia: Need to Modify Guidelines<br>to Encourage Earlier Diagnosis and Therapy. Canadian Journal of Cardiology, 2018, 34, 1112-1113.                                                          | 1.7  | 4         |
| 35 | Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated WithÂCoronary ArteryÂDisease.<br>Journal of the American College of Cardiology, 2017, 69, 823-836.                                                                                    | 2.8  | 214       |
| 36 | Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease: a molecular and genetic association study. Lancet Diabetes and Endocrinology,the, 2017, 5, 534-543.      | 11.4 | 84        |

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | TRIB1 is a positive regulator of hepatocyte nuclear factor 4-alpha. Scientific Reports, 2017, 7, 5574.                                                                                                                      | 3.3  | 26        |
| 38 | Association analyses based on false discovery rate implicate new loci for coronary artery disease.<br>Nature Genetics, 2017, 49, 1385-1391.                                                                                 | 21.4 | 571       |
| 39 | Partitioning the heritability of coronary artery disease highlights the importance of immune-mediated processes and epigenetic sites associated with transcriptional activity. Cardiovascular Research, 2017, 113, 973-983. | 3.8  | 31        |
| 40 | Can response to dietary restriction predict weight loss after <scp>R</scp> ouxâ€enâ€ <scp>Y</scp><br>gastroplasty?. Obesity, 2016, 24, 805-811.                                                                             | 3.0  | 7         |
| 41 | Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolemia Genes in Patients<br>With Severe Hypercholesterolemia. Journal of the American College of Cardiology, 2016, 67, 2578-2589.                | 2.8  | 723       |
| 42 | Coding Variation in <i>ANGPTL4,LPL,</i> and <i>SVEP1</i> and the Risk of Coronary Disease. New England Journal of Medicine, 2016, 374, 1134-1144.                                                                           | 27.0 | 427       |
| 43 | Adverse Effects of β-Blocker Therapy on Weight Loss in Response to a Controlled Dietary Regimen.<br>Canadian Journal of Cardiology, 2016, 32, 1246.e21-1246.e26.                                                            | 1.7  | 5         |
| 44 | The Sum of Its Parts: The Polygenic Basis of Coronary Artery Disease. Canadian Journal of Cardiology, 2016, 32, 1372-1374.                                                                                                  | 1.7  | 1         |
| 45 | Role of Tribbles Pseudokinase 1 (TRIB1) in human hepatocyte metabolism. Biochimica Et Biophysica Acta -<br>Molecular Basis of Disease, 2016, 1862, 223-232.                                                                 | 3.8  | 16        |
| 46 | Functional Analysis of a Novel Genome-Wide Association Study Signal in <i>SMAD3</i> That Confers<br>Protection From Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016,<br>36, 972-983.      | 2.4  | 48        |
| 47 | Genome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery disease. Nature Communications, 2016, 7, 10558.                                                    | 12.8 | 108       |
| 48 | Genetics of Coronary Artery Disease. Circulation Research, 2016, 118, 564-578.                                                                                                                                              | 4.5  | 288       |
| 49 | Association of exome sequences with plasma C-reactive protein levels in >9000 participants. Human<br>Molecular Genetics, 2015, 24, 559-571.                                                                                 | 2.9  | 36        |
| 50 | New genetic loci link adipose and insulin biology to body fat distribution. Nature, 2015, 518, 187-196.                                                                                                                     | 27.8 | 1,328     |
| 51 | Genetic variants primarily associated with type 2 diabetes are related to coronary artery disease risk.<br>Atherosclerosis, 2015, 241, 419-426.                                                                             | 0.8  | 26        |
| 52 | Runs of Homozygosity: Association with Coronary Artery Disease and Gene Expression in Monocytes and Macrophages. American Journal of Human Genetics, 2015, 97, 228-237.                                                     | 6.2  | 37        |
| 53 | A pharmacodynamic comparison of a personalized strategy for anti-platelet therapy versus ticagrelor<br>in achieving a therapeutic window. International Journal of Cardiology, 2015, 197, 318-325.                          | 1.7  | 15        |
| 54 | IRF2BP2 Reduces Macrophage Inflammation and Susceptibility to Atherosclerosis. Circulation Research, 2015, 117, 671-683.                                                                                                    | 4.5  | 64        |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Prognostic and Therapeutic Implications of Statin and Aspirin Therapy in Individuals With<br>Nonobstructive Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015,<br>35, 981-989.             | 2.4  | 147       |
| 56 | Ezetimibe. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, e13-5.                                                                                                                                            | 2.4  | 15        |
| 57 | Obesity and Ischemic Heart Disease. Circulation Research, 2015, 116, 570-571.                                                                                                                                              | 4.5  | 7         |
| 58 | Nonstatin Low-Density Lipoprotein–Lowering Therapy and Cardiovascular Risk Reduction—Statement<br>From <i>ATVB</i> Council. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2269-2280.                       | 2.4  | 58        |
| 59 | Functional interaction between COL4A1/COL4A2 and SMAD3 risk loci for coronary artery disease.<br>Atherosclerosis, 2015, 242, 543-552.                                                                                      | 0.8  | 55        |
| 60 | <i>PHACTR1</i> . Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1293-1295.                                                                                                                                  | 2.4  | 2         |
| 61 | A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nature Genetics, 2015, 47, 1121-1130.                                                                                 | 21.4 | 2,054     |
| 62 | Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction.<br>Nature, 2015, 518, 102-106.                                                                                          | 27.8 | 581       |
| 63 | Acylcarnitines: potential implications for skeletal muscle insulin resistance. FASEB Journal, 2015, 29, 336-345.                                                                                                           | 0.5  | 191       |
| 64 | Lower Mitochondrial Proton Leak and Decreased Glutathione Redox in Primary Muscle Cells of Obese<br>Diet-Resistant Versus Diet-Sensitive Humans. Journal of Clinical Endocrinology and Metabolism, 2014,<br>99, 4223-4230. | 3.6  | 17        |
| 65 | Distribution and Medical Impact of Loss-of-Function Variants in the Finnish Founder Population. PLoS<br>Genetics, 2014, 10, e1004494.                                                                                      | 3.5  | 351       |
| 66 | Adiposity significantly modifies genetic risk for dyslipidemia. Journal of Lipid Research, 2014, 55, 2416-2422.                                                                                                            | 4.2  | 33        |
| 67 | A Lowâ€Frequency Variant in MAPK14 Provides Mechanistic Evidence of a Link With Myeloperoxidase: A<br>Prognostic Cardiovascular Risk Marker. Journal of the American Heart Association, 2014, 3, .                         | 3.7  | 7         |
| 68 | Functional Analysis of the TRIB <i>1</i> Associated Locus Linked to Plasma Triglycerides and Coronary Artery Disease. Journal of the American Heart Association, 2014, 3, e000884.                                         | 3.7  | 42        |
| 69 | Risk Stratification and Selection for Statin Therapy: Going Beyond Framingham. Canadian Journal of Cardiology, 2014, 30, 667-670.                                                                                          | 1.7  | 7         |
| 70 | Genome-Wide Association Studies of Cardiovascular Disease in European and Non-European<br>Populations. Current Genetic Medicine Reports, 2014, 2, 1-12.                                                                    | 1.9  | 16        |
| 71 | Association of Low-Frequency and Rare Coding-Sequence Variants with Blood Lipids and Coronary<br>Heart Disease in 56,000 Whites and Blacks. American Journal of Human Genetics, 2014, 94, 223-232.                         | 6.2  | 287       |
| 72 | Low copy number of the salivary amylase gene predisposes to obesity. Nature Genetics, 2014, 46, 492-497.                                                                                                                   | 21.4 | 214       |

| #  | Article                                                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Netrin-1 promotes adipose tissue macrophage retention and insulin resistance in obesity. Nature<br>Medicine, 2014, 20, 377-384.                                                                                                                                                                                          | 30.7 | 213       |
| 74 | From Genome-Wide Association Studies to Functional Genomics: New Insights Into Cardiovascular<br>Disease. Canadian Journal of Cardiology, 2013, 29, 23-29.                                                                                                                                                               | 1.7  | 16        |
| 75 | ERK1/2 regulates hepatocyte Trib1 in response to mitochondrial dysfunction. Biochimica Et Biophysica<br>Acta - Molecular Cell Research, 2013, 1833, 3405-3414.                                                                                                                                                           | 4.1  | 15        |
| 76 | Chromosome 9p21.3 Locus forÂCoronary Artery Disease. Journal of the American College of Cardiology, 2013, 62, 1382-1383.                                                                                                                                                                                                 | 2.8  | 14        |
| 77 | A 680 kb duplication at the FTO locus in a kindred with obesity and a distinct body fat distribution.<br>European Journal of Human Genetics, 2013, 21, 1417-1422.                                                                                                                                                        | 2.8  | 10        |
| 78 | Remnant Cholesterol. Journal of the American College of Cardiology, 2013, 61, 437-439.                                                                                                                                                                                                                                   | 2.8  | 26        |
| 79 | Inflammation and Coronary Artery Disease: Insights From Genetic Studies. Canadian Journal of Cardiology, 2012, 28, 662-666.                                                                                                                                                                                              | 1.7  | 45        |
| 80 | Blood Gene Expression Reveal Pathway Differences Between Dietâ€Sensitive and Resistant Obese Subjects<br>Prior to Caloric Restriction. Obesity, 2011, 19, 457-463.                                                                                                                                                       | 3.0  | 23        |
| 81 | Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 2010, 466, 707-713.                                                                                                                                                                                                                   | 27.8 | 3,249     |
| 82 | Distinct skeletal muscle fiber characteristics and gene expression in diet-sensitive versus diet-resistant obesity. Journal of Lipid Research, 2010, 51, 2394-2404.                                                                                                                                                      | 4.2  | 52        |
| 83 | New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.<br>Nature Genetics, 2010, 42, 105-116.                                                                                                                                                                              | 21.4 | 1,982     |
| 84 | Genetic contributors to obesity. Canadian Journal of Cardiology, 2007, 23, 23A-27A.                                                                                                                                                                                                                                      | 1.7  | 30        |
| 85 | A Common Allele on Chromosome 9 Associated with Coronary Heart Disease. Science, 2007, 316, 1488-1491.                                                                                                                                                                                                                   | 12.6 | 1,591     |
| 86 | Canadian Cardiovascular Society position statement – Recommendations for the diagnosis and<br>treatment of dyslipidemia and prevention of cardiovascular disease. Canadian Journal of Cardiology,<br>2006, 22, 913-927.                                                                                                  | 1.7  | 271       |
| 87 | Molecular regulation of SREBP function: the Insig-SCAP connection and isoform-specific modulation of lipid synthesis. Biochemistry and Cell Biology, 2004, 82, 201-211.                                                                                                                                                  | 2.0  | 98        |
| 88 | Decreased Mitochondrial Proton Leak and Reduced Expression of Uncoupling Protein 3 in Skeletal<br>Muscle of Obese Diet-Resistant Women. Diabetes, 2002, 51, 2459-2466.                                                                                                                                                   | 0.6  | 113       |
| 89 | Efficacy of atorvastatin in achieving National Cholesterol Education Program low-density lipoprotein targets in women with severe dyslipidemia and cardiovascular disease or risk factors for cardiovascular disease: The Women's Atorvastatin Trial on Cholesterol (WATCH). American Heart lournal. 2001. 141. 949-956. | 2.7  | 21        |