Vladimir Kuznetsov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6744062/publications.pdf Version: 2024-02-01

VIADIMID KUZNETSOV

#	Article	IF	CITATIONS
1	Onion-like carbon from ultra-disperse diamond. Chemical Physics Letters, 1994, 222, 343-348.	2.6	610
2	The Catalytic Use of Onion-Like Carbon Materials for Styrene Synthesis by Oxidative Dehydrogenation of Ethylbenzene. Angewandte Chemie - International Edition, 2002, 41, 1885.	13.8	248
3	Oxidative dehydrogenation of ethylbenzene to styrene over ultra-dispersed diamond and onion-like carbon. Carbon, 2007, 45, 2145-2151.	10.3	168
4	Hydroxylated Detonation Nanodiamond: FTIR, XPS, and NMR Studies. Journal of Physical Chemistry C, 2011, 115, 19005-19011.	3.1	143
5	Oxidation behavior of multiwall carbon nanotubes with different diameters and morphology. Applied Surface Science, 2012, 258, 6272-6280.	6.1	124
6	Thermodynamic analysis of nucleation of carbon deposits on metal particles and its implications for the growth of carbon nanotubes. Physical Review B, 2001, 64, .	3.2	107
7	Nanodiamond bioconjugate probes and their collection by electrophoresis. Diamond and Related Materials, 2008, 17, 1858-1866.	3.9	100
8	Raman spectra for characterization of defective CVD multiâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2014, 251, 2444-2450.	1.5	81
9	Properties of individual fractions of detonation nanodiamond. Diamond and Related Materials, 2006, 15, 1804-1808.	3.9	67
10	<i>In situ</i> and <i>ex situ</i> time resolved study of multiâ€component FeCo oxide catalyst activation during MWNT synthesis. Physica Status Solidi (B): Basic Research, 2012, 249, 2390-2394.	1.5	62
11	Evidence of an Equimolar C2H2–CO2 Reaction in the Synthesis of Carbon Nanotubes. Angewandte Chemie - International Edition, 2007, 46, 441-444.	13.8	61
12	Onion-like carbon for terahertz electromagnetic shielding. Diamond and Related Materials, 2008, 17, 462-466.	3.9	61
13	Closed curved graphite-like structures formation on micron-size diamond. Chemical Physics Letters, 1998, 289, 353-360.	2.6	56
14	Attenuation of electromagnetic waves in onion-like carbon composites. Diamond and Related Materials, 2007, 16, 1231-1235.	3.9	55
15	Multiâ€walled carbon nanotubes with ppm level of impurities. Physica Status Solidi (B): Basic Research, 2010, 247, 2695-2699.	1.5	50
16	Terahertz probing of onion-like carbon-PMMA composite films. Diamond and Related Materials, 2008, 17, 1608-1612.	3.9	45
17	Magnetic and dielectric properties of carbon nanotubes with embedded cobalt nanoparticles. Carbon, 2017, 114, 39-49.	10.3	45
18	High dielectric permittivity of percolative composites based on onion-like carbon. Applied Physics Letters, 2009, 95, 112901.	3.3	44

#	Article	IF	CITATIONS
19	Electromagnetic shielding properties of MWCNT/PMMA composites in Kaâ€band. Physica Status Solidi (B): Basic Research, 2009, 246, 2662-2666.	1.5	39
20	Chiral carbon nanoscrolls with a polygonal cross-section. Carbon, 2009, 47, 3099-3105.	10.3	37
21	Influence of the morphology and the surface chemistry of carbons on their catalytic performances in the catalytic wet peroxide oxidation of organic contaminants. Applied Catalysis A: General, 2010, 387, 55-66.	4.3	33
22	Controllable electromagnetic response of onionâ€like carbon based materials. Physica Status Solidi (B): Basic Research, 2008, 245, 2051-2054.	1.5	32
23	Internal field 59Co NMR study of cobalt-iron nanoparticles during the activation of CoFe2/CaO catalyst for carbon nanotube synthesis. Journal of Catalysis, 2018, 358, 62-70.	6.2	31
24	Dielectric properties of a novel high absorbing onion-like-carbon based polymer composite. Diamond and Related Materials, 2010, 19, 91-99.	3.9	29
25	Aldose to ketose interconversion: galactose and arabinose isomerization over heterogeneous catalysts. Catalysis Science and Technology, 2017, 7, 5321-5331.	4.1	29
26	Co metal nanoparticles deposition inside or outside multi-walled carbon nanotubes via facile support pretreatment. Applied Surface Science, 2018, 456, 657-665.	6.1	29
27	Structure of the in situ produced polyethylene based composites modified with multi-walled carbon nanotubes: In situ synchrotron X-ray diffraction and differential scanning calorimetry study. Composites Science and Technology, 2018, 167, 148-154.	7.8	28
28	Mechanistic Scrutiny Identifies a Kinetic Role for Cytochrome b5 Regulation of Human Cytochrome P450c17 (CYP17A1, P450 17A1). PLoS ONE, 2015, 10, e0141252.	2.5	28
29	Diamond Phase Transitions at Nanoscale. , 2006, , 405-475.		27
30	Co/multi-walled carbon nanotubes/polyethylene composites for microwave absorption: Tuning the effectiveness of electromagnetic shielding by varying the components ratio. Composites Science and Technology, 2021, 207, 108731.	7.8	27
31	An investigation of electromagnetic response of composite polymer materials containing carbon nanostructures within the range of frequencies 10 MHz – 1.1 THz. Russian Physics Journal, 2013, 55, 970-976.	0.4	26
32	Fe–Mo and Co–Mo Catalysts with Varying Composition for Multiâ€Walled Carbon Nanotube Growth. Physica Status Solidi (B): Basic Research, 2018, 255, 1700260.	1.5	26
33	Immobilization of recombinant E. coli thermostable lipase by entrapment inside silica xerogel and nanocarbon-in-silica composites. Journal of Molecular Catalysis B: Enzymatic, 2013, 98, 78-86.	1.8	23
34	Metal-insulator transition and size dependent electrical percolation in onion-like carbon/polydimethylsiloxane composites. Journal of Applied Physics, 2014, 115, .	2.5	23
35	Investigation of electromagnetic properties of MWCNT aerogels produced via catalytic ethylene decomposition. Physica Status Solidi (B): Basic Research, 2015, 252, 2519-2523.	1.5	23
36	Direct Vapor-Phase Bromination of Multiwall Carbon Nanotubes. Journal of Nanotechnology, 2012, 2012, 2012, 1-5.	3.4	22

VLADIMIR KUZNETSOV

#	Article	IF	CITATIONS
37	Investigation of defectiveness of multiwalled carbon nanotubes produced with Fe–Co catalysts of different composition. Journal of Nanophotonics, 2016, 10, 012526.	1.0	22
38	Comparative study of multiwalled carbon nanotube/polyethylene composites produced via different techniques. Physica Status Solidi (B): Basic Research, 2014, 251, 2437-2443.	1.5	21
39	Terahertz dielectric properties of multiwalled carbon nanotube/polyethylene composites. Materials Research Express, 2017, 4, 106201.	1.6	21
40	Polyhedral silsesquioxanes as precursors of tailor-made heterogeneous catalyst centres. Journal of Organometallic Chemistry, 1994, 475, 65-72.	1.8	19
41	Influence of carbon-nanotube diameters on composite dielectric properties. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2491-2498.	1.8	19
42	Raman Spectra for Characterization of Onion-Like Carbon. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 106-109.	0.5	19
43	Optical limiting and bleaching effects in a suspension of onion-like carbon. Quantum Electronics, 2009, 39, 342-346.	1.0	18
44	Laser modification of optical properties of a carbon nanotube suspension in dimethylformamide. Technical Physics Letters, 2013, 39, 337-340.	0.7	18
45	Side reaction in catalytic CVD growth of carbon nanotubes: Surface pyrolysis of a hydrocarbon precursor with the formation of lateral carbon deposits. Carbon, 2018, 139, 105-117.	10.3	18
46	A model for catalytic synthesis of carbon nanotubes in a fluidized-bed reactor: Effect of reaction heat. Chemical Engineering Journal, 2017, 329, 305-311.	12.7	17
47	Macroporous carbon aerogel as a novel adsorbent for immobilized enzymes and a support for the lipase-active heterogeneous biocatalysts for conversion of triglycerides and fatty acids. Journal of Porous Materials, 2018, 25, 1017-1026.	2.6	17
48	Comparative study of reflectance properties of nanodiamonds, onionâ€ i ike carbon and multiwalled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2011, 248, 2572-2576.	1.5	16
49	Singleâ€walled carbon nanotubes as a template for coronene stack formation. Physica Status Solidi (B): Basic Research, 2014, 251, 2372-2377.	1.5	15
50	Optical properties of silica aerogels with embedded multiwalled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2016, 253, 2440-2445.	1.5	15
51	In situ Polymerization Technique for Obtaining Composite Materials Based on Polyethylene, Multi-walled Carbon Nanotubes and Cobalt Nanoparticles. Russian Journal of Applied Chemistry, 2018, 91, 127-135.	0.5	15
52	The low-temperature specific heat of MWCNTs. Low Temperature Physics, 2019, 45, 347-354.	0.6	15
53	Study of Onion-Like Carbon (OLC) Formation from Ultra Disperse Diamond (UDD). Materials Research Society Symposia Proceedings, 1994, 359, 105.	0.1	13
54	Electromagnetic Interaction Between Spherical Aerogels of Multiâ€Walled Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2018, 255, 1700256.	1.5	13

VLADIMIR KUZNETSOV

#	Article	IF	CITATIONS
55	Onion-Like Carbon in Microwaves: Electromagnetic Absorption Bands and Percolation Effect. Journal of Nanoelectronics and Optoelectronics, 2009, 4, 257-260.	0.5	13
56	Influence of the Growth Temperature on the Defective Structure of the Multiâ€Walled Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2018, 255, 1700255.	1.5	12
57	Influence of multi-walled carbon nanotubes on the cognitive abilities of Wistar rats. Experimental and Therapeutic Medicine, 2016, 12, 1311-1318.	1.8	11
58	Thermodynamic analysis of nucleation of boron nitride nanotubes on metal particles. Physica Status Solidi (B): Basic Research, 2007, 244, 4165-4169.	1.5	10
59	Synergy effects in the electrical conductivity behavior of onion-like carbon and multiwalled carbon nanotubes composites. Physica Status Solidi (B): Basic Research, 2015, 252, 1799-1803.	1.5	10
60	Dielectric properties of onion-like carbon and detonation nanodiamond/polydimethysiloxane composites. Polymer Composites, 2015, 36, 2084-2092.	4.6	10
61	Low-frequency (10–50 kHz) impedance of polystyrene-onion-like-carbon composites. Technical Physics Letters, 2009, 35, 85-88.	0.7	9
62	Structure and Electrophysical Properties of Multiwalled Carbon Nanotube/Polymethylmethacrylate Composites Prepared via Coagulation Technique. Nanoscience and Nanotechnology Letters, 2011, 3, 18-23.	0.4	9
63	Localization and electrical transport in onion-like carbon based composites. Journal of Applied Physics, 2012, 111, 103701.	2.5	9
64	Recombinant strain producing thermostable lipase from Thermomyces lanuginosus immobilized into nanocarbon-in-silica matrices and properties of the prepared biocatalysts. Applied Biochemistry and Microbiology, 2013, 49, 296-305.	0.9	9
65	Analysis of Defectâ€Free Graphene Blocks in Nitrogenâ€Doped Bambooâ€Like Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2018, 255, 1700253.	1.5	9
66	Immobilization of enzymatic active substances by immuring inside nanocarbon-in-silica composites. Journal of Molecular Catalysis B: Enzymatic, 2012, 76, 116-124.	1.8	8
67	Dielectric Properties of Polymer Composites with Carbon Nanotubes of Different Diameters. Journal of Nanoscience and Nanotechnology, 2014, 14, 5430-5434.	0.9	8
68	Electrocorrosion properties of multiwall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2010, 247, 2738-2742.	1.5	7
69	Carbon-in-silica matrices for the preparation of heterogeneous biocatalysts: The synthesis of carbon nanofibers on a Ni/SiO2 catalyst and the characterization of the resulting adsorbents for the immobilization of thermostable lipase. Kinetics and Catalysis, 2013, 54, 749-760.	1.0	7
70	Length-dependent broadband electric properties of PMMA composites filled with carbon nanotubes. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1025-1033.	1.8	7
71	Short-Time Effect of Multi-Walled Carbon Nanotubes on Some Histological and Biochemical Parameters in Marine Bivalves <i>Crenomytilus grayanus</i> (Dunker, 1853) and <i>Swiftopecten swifti</i> (Bernardi, 1858). Nano Hybrids and Composites, 0, 13, 225-231.	0.8	7
72	Dielectric properties of annealed onion-like carbon composites in microwave region. Lithuanian Journal of Physics, 2013, 53, 238-243.	0.4	7

#	Article	IF	CITATIONS
73	Photoinduced transparency of a suspension of onion-like carbon nanoparticles. Technical Physics Letters, 2009, 35, 162-165.	0.7	6
74	Diamond Phase Transitions at Nanoscale. , 2012, , 181-244.		6
75	Broadband dielectric properties of onion-like carbon/polyurethane composites. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2683-2688.	1.8	6
76	Carbon nanotubes and carbon onions for modification of styrene–acrylate copolymer nanocomposites. Polymer Composites, 2015, 36, 1048-1054.	4.6	6
77	Sizeâ€Dependent Electrical and Thermal Properties of Onionâ€Like Carbons/Polyurethane Composites. Polymer Composites, 2018, 39, E1834.	4.6	6
78	Dielectric properties of MWCNT based polymer composites close and below percolation threshold. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2814-2816.	0.8	5
79	Laser-induced diamagnetism in suspension of onion-like carbon particles. Technical Physics Letters, 2011, 37, 831-834.	0.7	5
80	Terahertz transmission spectra of composite materials based on MWNT with different time of ultrasonic processing. , 2012, , .		5
81	Small-sized body influence on the quality factor increasing of quasioptical open resonator. Optical and Quantum Electronics, 2017, 49, 1.	3.3	5
82	The Usage of Conducting Wire Sphere Models for the Estimation of Electrophysical Properties of Multiwalled Carbon Nanotube Spherical Aerogels. Physica Status Solidi (B): Basic Research, 2018, 255, 1800193.	1.5	5
83	Electrical transport in onion-like carbon—PMMA nanocomposites. Applied Physics Letters, 2019, 114, .	3.3	5
84	Combustion characteristics and structure of carbon nanotube/titanium composites. Journal of Thermal Analysis and Calorimetry, 2019, 137, 1903-1910.	3.6	5
85	Chemical Vapor Deposition of Silicon Nanoparticles on the Surface of Multiwalled Carbon Nanotubes. Journal of Structural Chemistry, 2020, 61, 617-627.	1.0	5
86	Radioabsorbing Materials Based on Polyurethane with Carbon Fillers. Advanced Materials Research, 0, 1040, 137-141.	0.3	4
87	Electrochemistry of cytochrome P450 17α-hydroxylase/17,20-lyase (P450c17). Molecular and Cellular Endocrinology, 2017, 441, 62-67.	3.2	4
88	Influence of Carbon Nanotube Spatial Distribution on Electromagnetic Properties of Nanotube–Polymer Composites. Physica Status Solidi (B): Basic Research, 2018, 255, 1700257.	1.5	4
89	Electromagnetic Parameters of Composite Materials Based on Polyethylene and Multi-Walled Carbon Nanotubes Modified by Iron Oxide Nanoparticles. Russian Journal of Applied Chemistry, 2018, 91, 1994-2002.	0.5	4
90	Formation of Zieglerâ€type catalytic systems on the surface of multiâ€walled carbon nanotubes for the production of composite materials by <i>in situ</i> polymerization. Journal of Applied Polymer Science, 2019, 136, 48212.	2.6	4

VLADIMIR KUZNETSOV

#	Article	IF	CITATIONS
91	Influence of Humidity on Dielectric Properties of PMMA Nanocomposites Containing Onion-Like Carbon. Ferroelectrics, 2009, 391, 131-138.	0.6	3
92	CNT/PMMA Electromagnetic Coating: Effect of Carbon Nanotube Diameter. Fullerenes Nanotubes and Carbon Nanostructures, 2012, 20, 527-530.	2.1	3
93	Characterization of aluminum-carbon composites obtained via mechanical activation of aluminum and carbon nanotubes. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 162-165.	0.6	3
94	Modification of the surface of carbon fibers with multi-walled carbon nanotubes and its effect on mechanical characteristics of composites with epoxy resin. Russian Journal of Applied Chemistry, 2016, 89, 1969-1977.	0.5	3
95	Dielectric Response of Onion-Like Carbon-Based Polymethyl Methacrylate Composites. Journal of Nanoelectronics and Optoelectronics, 2009, 4, 261-266.	0.5	3
96	Electric/dielectric properties of composites filled with onion-like carbon and multiwalled carbon nanotubes. Lithuanian Journal of Physics, 2015, 55, .	0.4	3
97	Temperature Dependence of Electroresistivity, Negative and Positive Magnetoresistivity of Graphite/Diamond Nanocomposites and Onion-Like Carbon. Materials Research Society Symposia Proceedings, 2001, 703, 1.	0.1	2
98	Change in sizes of carbon aggregates and primary particles of the onion-like carbon synthesized by high-temperature annealing of nanodiamond. Russian Chemical Bulletin, 2014, 63, 599-604.	1.5	2
99	Interaction of Multiwalled Carbon Nanotube Aerogels with Quasiâ€Optical Terahertz Beams. Physica Status Solidi (B): Basic Research, 2019, 256, 1900251.	1.5	2
100	The morphology evolution of polyethylene produced in the presence of a <scp>Zieglerâ€type</scp> catalyst anchored on the surface of <scp>multiâ€walled</scp> carbon nanotubes. Journal of Applied Polymer Science, 2021, 138, 50528.	2.6	2
101	Topology and Electronic Structure of Onion-Like Carbon and Graphite/Diamond Nanocomposites. Materials Research Society Symposia Proceedings, 2001, 703, 1.	0.1	1
102	Thermodynamic Analysis of Carbon Nucleation on a Metal Surface. Materials Research Society Symposia Proceedings, 2001, 706, 1.	0.1	1
103	Synthesis of Highly Dispersed Pt Catalysts on MWCNTs via Hydrolytic Deposition without Preliminary Modification of the Support. Advanced Materials Research, 0, 1040, 399-404.	0.3	1
104	Electrophysical Properties of Onion-Like Carbon. Russian Physics Journal, 2016, 59, 171-176.	0.4	1
105	The electromagnetic characteristics of the composites based on hexaferrites and MCNT at gigahertz and terahertz		1
106	A composite material with controllable electromagnetic characteristics for the terahertz frequency range. Journal of Applied Physics, 2022, 131, 064103.	2.5	1
107	Electromagnetic response of polymer composites with quasi-spherical nanocarbon inclusions: theory below the percolation threshold. Journal of Polymer Engineering, 2011, 31, .	1.4	0
108	Electromagnetic properties of MWCNT/PE composites at different levels of THz peak power. , 2013, , .		0

#	Article	IF	CITATIONS
109	Research of Electromagnetic Properties of Composite Materials on the Basis of MWNTs in Microwave Range. Advanced Materials Research, 2014, 1040, 142-147.	0.3	0
110	Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites. , 2014, , .		0
111	Terahertz dielectric properties of MWCNT/PE composites. , 2016, , .		0
112	Influence of Carbon Nanotube Spatial Distribution on Electromagnetic Properties of Nanotube–Polymer Composites (Phys. Status Solidi B 1/2018). Physica Status Solidi (B): Basic Research, 2018, 255, 1870103.	1.5	0
113	Multi-walled carbon nanotube aerogels in quasi-optical terahertz beams. AIP Conference Proceedings, 2021, , .	0.4	0