Cedric Linder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/674311/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Variation of University Physics Students' Experience of Plus and Minus Signs in 1D Vector-kinematics Revisited. African Journal of Research in Mathematics, Science and Technology Education, 2022, 26, 63-76.	1.0	2
2	Qualitatively different ways of unpacking visual representations when teaching intermolecular forces in upper secondary school. Science Education, 2021, 105, 1173-1201.	3.0	9
3	Developing representational competence: linking real-world motion to physics concepts through graphs. Learning: Research and Practice, 2020, 6, 88-107.	0.4	13
4	Learning to use Cartesian coordinate systems to solve physics problems: the case of â€~movability'. European Journal of Physics, 2020, 41, 045701.	0.6	10
5	Using social semiotics and variation theory to analyse learning challenges in physics: a methodological case study. European Journal of Physics, 2020, 41, 065705.	0.6	11
6	Network analysis and qualitative discourse analysis of a classroom group discussion. International Journal of Research and Method in Education, 2019, 42, 317-339.	1.9	13
7	<scp>T</scp> eachers' reasoning <scp>:</scp> Classroom visual representational practices in the context of introductory chemical bonding. Science Education, 2017, 101, 887-906.	3.0	15
8	Social Semiotics in University Physics Education. Models and Modeling in Science Education, 2017, , 95-122.	0.6	32
9	Enhancing the possibilities for learning: variation of disciplinary-relevant aspects in physics representations. European Journal of Physics, 2015, 36, 055001.	0.6	24
10	Considering student retention as a complex system: a possible way forward for enhancing student retention. European Journal of Engineering Education, 2015, 40, 235-255.	2.3	11
11	Towards addressing transient learning challenges in undergraduate physics: an example from electrostatics. European Journal of Physics, 2015, 36, 055002.	0.6	8
12	Challenges faced by teachers implementing socio-scientific issues as core elements in their classroom practices. European Journal of Science and Mathematics Education, 2015, 3, 159-176.	1.1	42
13	What's natural about nature? Deceptive concepts in socio-scientific decision-making. European Journal of Science and Mathematics Education, 2015, 3, 250-264.	1.1	4
14	Physics Students' Social Media Learning Behaviours and Connectedness. International Journal of Digital Literacy and Digital Competence, 2015, 6, 16-35.	0.2	3
15	University Students' Reflections on Representations in Genetics and Stereochemistry Revealed by a Focus Group Approach. Nordic Studies in Science Education, 2015, 11, 169-179.	0.2	0
16	Who Needs 3D When the Universe Is Flat?. Science Education, 2014, 98, 412-442.	3.0	29
17	A new approach to modelling student retention through an application of complexity thinking. Studies in Higher Education, 2014, 39, 68-86.	4.5	28
18	Unpacking physics representations: Towards an appreciation of disciplinary affordance. Physical Review Physics Education Research, 2014, 10, .	1.7	45

CEDRIC LINDER

#	Article	IF	CITATIONS
19	Sandbox University: Estimating Influence of Institutional Action. PLoS ONE, 2014, 9, e103261.	2.5	4
20	Students' Ontological Security and Agency in Science Education—An Example from Reasoning about the Use of Gene Technology. International Journal of Science Education, 2013, 35, 2299-2330.	1.9	6
21	Penetrating a wall of introspection: a critical attrition analysis. Cultural Studies of Science Education, 2013, 8, 87-115.	1.3	4
22	USING A DISCIPLINARY DISCOURSE LENS TO EXPLORE HOW REPRESENTATIONS AFFORD MEANING MAKING IN A TYPICAL WAVE PHYSICS COURSE. International Journal of Science and Mathematics Education, 2013, 11, 625-650.	2.5	4
23	Disciplinary discourse, representation, and appresentation in the teaching and learning of science. European Journal of Science and Mathematics Education, 2013, 1, 43-49.	1.1	20
24	Exploring the role of physics representations: an illustrative example from students sharing knowledge about refraction. European Journal of Physics, 2012, 33, 657-666.	0.6	77
25	An exploratory study into the complexity of relations between physics lecturers' crafting of practice and students' expectations of quality teaching. Instructional Science, 2011, 39, 513-526.	2.0	1
26	Learning in physics by doing laboratory work: towards a new conceptual framework. Gender and Education, 2009, 21, 129-144.	1.7	23
27	The learners' experience of variation: following students' threads of learning physics in computer simulation sessions. Instructional Science, 2009, 37, 273-292.	2.0	39
28	A disciplinary discourse perspective on university science learning: Achieving fluency in a critical constellation of modes. Journal of Research in Science Teaching, 2009, 46, 27-49.	3.3	216
29	Higher education science and engineering: Generating interaction with the variation perspective on learning. Education As Change, 2009, 13, 277-291.	0.5	4
30	The experience of interacting with technological artefacts. European Journal of Engineering Education, 2009, 34, 295-303.	2.3	6
31	Teaching in higher education through the use of variation: examples from distillation, physics and process dynamics. European Journal of Engineering Education, 2009, 34, 369-381.	2.3	19
32	SimChemistry as an active learning tool in chemical education. Chemistry Education Research and Practice, 2008, 9, 277-284.	2.5	7
33	Improving Students' Self-Assessment of Numerical Analysis Projects. Computing in Science and Engineering, 2007, 9, 92-95.	1.2	0
34	Metacognitive activity in the physics student laboratory: is increased metacognition necessarily better?. Metacognition and Learning, 2007, 2, 41-56.	2.7	22
35	Using a Variation Approach To Enhance Physics Learning in a College Classroom. Physics Teacher, 2006, 44, 589-592.	0.3	36
36	Beyond Lesson Studies and Design Experiments – Using Theoretical Tools in Practice and Finding Out How They Work. International Review of Economics Education, 2006, 5, 28-45.	1.6	26

#	Article	IF	CITATIONS
37	Language and the experience of learning university physics in Sweden. European Journal of Physics, 2006, 27, 553-560.	0.6	124
38	Students' Expectations of Teaching in Undergraduate Physics. International Journal of Science Education, 2005, 27, 1255-1268.	1.9	14
39	Physics students learning about abstract mathematical tools when engaging with "invisible― phenomena. , 0, , .		4