
Ping Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6742852/publications.pdf Version: 2024-02-01

DINC CHANC

#	Article	IF	CITATIONS
1	Some theoretical considerations on predictability of linear stochastic dynamics. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 55, 148.	1.7	5
2	Barrier layers and tropical Atlantic SST biases in coupled GCMs. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 60, 885.	1.7	65
3	The Barrier Layer of the Atlantic warm pool: Formation mechanism and influence on the mean climate. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 64, 18162.	1.7	38
4	Impact of Different Wind Representations on Resonant Ocean Near-inertial Motions in the Gulf of Mexico. Ocean Science Journal, 2022, 57, 25-36.	1.3	1
5	Threat by marine heatwaves to adaptive large marine ecosystems in an eddy-resolving model. Nature Climate Change, 2022, 12, 179-186.	18.8	32
6	El Niño/Southern Oscillation inhibited by submesoscale ocean eddies. Nature Geoscience, 2022, 15, 112-117.	12.9	16
7	Role of Sea‣urface Salinity in Simulating Historical Decadal Variations of Atlantic Meridional Overturning Circulation in a Coupled Climate Model. Geophysical Research Letters, 2022, 49, .	4.0	5
8	A Comparison between the Kuroshio Extension and Pineapple Express Atmospheric Rivers Affecting the West Coast of North America. Journal of Climate, 2022, 35, 3905-3925.	3.2	2
9	On the Intermittent Occurrence of Openâ€Ocean Polynyas in a Multi entury Highâ€Resolution Preindustrial Earth System Model Simulation. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	2
10	The Impact of Horizontal Resolution on Projected Sea‣evel Rise Along US East Continental Shelf With the Community Earth System Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	7
11	Improving the Understanding of Atmospheric River Water Vapor Transport Using a Threeâ€Đimensional Straightened Composite Analysis. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	1
12	Role of Ocean and Atmosphere Variability in Scaleâ€Dependent Thermodynamic Airâ€Sea Interactions. Journal of Geophysical Research: Oceans, 2022, 127, .	2.6	6
13	Impact of the Benguela coastal low-level jet on the southeast tropical Atlantic SST bias in a regional ocean model. Climate Dynamics, 2021, 56, 2773-2800.	3.8	12
14	Ocean fronts and eddies force atmospheric rivers and heavy precipitation in western North America. Nature Communications, 2021, 12, 1268.	12.8	29
15	Contribution of the Two Types of Ekman Pumping Induced Eddy Heat Flux to the Total Vertical Eddy Heat Flux. Geophysical Research Letters, 2021, 48, e2021GL092982.	4.0	1
16	Introducing the New Regional Community Earth System Model, R-CESM. Bulletin of the American Meteorological Society, 2021, 102, E1821-E1843.	3.3	1
17	Central American mountains inhibit eastern North Pacific seasonal tropical cyclone activity. Nature Communications, 2021, 12, 4422.	12.8	10
18	On the Upper-Ocean Vertical Eddy Heat Transport in the Kuroshio Extension. Part II: Effects of Air-Sea Interactions. Journal of Physical Oceanography, 2021, , .	1.7	1

#	Article	IF	CITATIONS
19	Evaluation of a Coupled Modeling Approach for the Investigation of the Effects of SST Mesoscale Variability on the Atmosphere. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002412.	3.8	2
20	Bringing the Future Into Focus: Benefits and Challenges of High-Resolution Global Climate Change Simulations. Computing in Science and Engineering, 2021, 23, 34-41.	1.2	1
21	On the Upper-Ocean Vertical Eddy Heat Transport in the Kuroshio Extension. Part I: Variability and Dynamics. Journal of Physical Oceanography, 2021, 51, 229-246.	1.7	22
22	An outsized role for the Labrador Sea in the multidecadal variability of the Atlantic overturning circulation. Science Advances, 2021, 7, eabh3592.	10.3	41
23	An Improved Parameterization of Windâ€Driven Turbulent Vertical Mixing Based on an Eddyâ€Resolving Climate Model. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002630.	3.8	1
24	Optimal Growth of IPV Lags AMV Modulations by up to a Decade. Geophysical Research Letters, 2021, 48, .	4.0	6
25	Surface Heat Flux Induced by Mesoscale Eddies Cools the Kuroshioâ€Oyashio Extension Region. Geophysical Research Letters, 2020, 47, e2019GL086050.	4.0	17
26	A high-resolution Asia-Pacific regional coupled prediction system with dynamically downscaling coupled data assimilation. Science Bulletin, 2020, 65, 1849-1858.	9.0	12
27	Sensitivity of the Atlantic Meridional Overturning Circulation to Model Resolution in CMIP6 HighResMIP Simulations and Implications for Future Changes. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002014.	3.8	59
28	Maintenance of mid-latitude oceanic fronts by mesoscale eddies. Science Advances, 2020, 6, eaba7880.	10.3	39
29	A Comparison of Northern Hemisphere Atmospheric Rivers Detected by a New Image-Processing Based Method and Magnitude-Thresholding Based Methods. Atmosphere, 2020, 11, 628.	2.3	12
30	An Unprecedented Set of Highâ€Resolution Earth System Simulations for Understanding Multiscale Interactions in Climate Variability and Change. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002298.	3.8	104
31	Impact of Systematic GCM Errors on Prediction Skill as Estimated by Linear Inverse Modeling. Journal of Climate, 2020, 33, 10073-10095.	3.2	11
32	Image-processing-based atmospheric river tracking method version 1 (IPART-1). Geoscientific Model Development, 2020, 13, 4639-4662.	3.6	18
33	Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform. Geoscientific Model Development, 2020, 13, 4809-4829.	3.6	30
34	Impact of Coherent Ocean Stratification on AMOC Reconstruction by Coupled Data Assimilation with a Biased Model. Journal of Climate, 2020, 33, 7319-7334.	3.2	3
35	Influence of the Ocean Mesoscale Eddy–Atmosphere Thermal Feedback on the Upper-Ocean Haline Stratification. Journal of Physical Oceanography, 2020, 50, 2475-2490.	1.7	5
36	Atmosphere–Ocean Interactions. , 2020, , 89-119.		2

#	Article	IF	CITATIONS
37	A Multiâ€Timescale EnOl‣ike Highâ€Efficiency Approximate Filter for Coupled Model Data Assimilation. Journal of Advances in Modeling Earth Systems, 2019, 11, 45-63.	3.8	8
38	Suppression of winter heavy precipitation in Southeastern China by the Kuroshio warm current. Climate Dynamics, 2019, 53, 2437-2450.	3.8	4
39	Weakening Atlantic Niño–Pacific connection under greenhouse warming. Science Advances, 2019, 5, eaax4111.	10.3	42
40	High-Resolution Tropical Channel Model Simulations of Tropical Cyclone Climatology and Intraseasonal-to-Interannual Variability. Journal of Climate, 2019, 32, 7871-7895.	3.2	10
41	Tropical Pacific Ocean Dynamical Response to Short-Term Sulfate Aerosol Forcing. Journal of Climate, 2019, 32, 8205-8221.	3.2	6
42	Ocean Eddy Energetics in the Spectral Space as Revealed by High-Resolution General Circulation Models. Journal of Physical Oceanography, 2019, 49, 2815-2827.	1.7	7
43	The Tropical Atlantic Observing System. Frontiers in Marine Science, 2019, 6, .	2.5	80
44	Pantropical climate interactions. Science, 2019, 363, .	12.6	419
45	Mesoscale SST Dynamics in the Kuroshio–Oyashio Extension Region. Journal of Physical Oceanography, 2019, 49, 1339-1352.	1.7	25
46	A Modeling Strategy for the Investigation of the Effect of Mesoscale SST Variability on Atmospheric Dynamics. Geophysical Research Letters, 2019, 46, 3982-3989.	4.0	15
47	Mesoscale Air–Sea Interaction and Its Role in Eddy Energy Dissipation in the Kuroshio Extension. Journal of Climate, 2019, 32, 8659-8676.	3.2	21
48	The impact of climate model sea surface temperature biases on tropical cyclone simulations. Climate Dynamics, 2019, 53, 173-192.	3.8	35
49	Midlatitude Mesoscale Ocean-Atmosphere Interaction and Its Relevance to S2S Prediction. , 2019, , 183-200.		8
50	The Response of Atlantic Tropical Cyclones to Suppression of African Easterly Waves. Geophysical Research Letters, 2018, 45, 471-479.	4.0	47
51	The Influence of ENSO Flavors on Western North Pacific Tropical Cyclone Activity. Journal of Climate, 2018, 31, 5395-5416.	3.2	80
52	Vertical and horizontal resolution dependency in the model representation of tracer dispersion along the continental slope in the northern Gulf of Mexico. Ocean Modelling, 2018, 122, 13-25.	2.4	20
53	Observed Energy Exchange between Low-Frequency Flows and Internal Waves in the Gulf of Mexico. Journal of Physical Oceanography, 2018, 48, 995-1008.	1.7	17
54	Low-Frequency North Atlantic Climate Variability in the Community Earth System Model Large Ensemble. Journal of Climate, 2018, 31, 787-813.	3.2	86

Ping Chang

#	Article	IF	CITATIONS
55	The Benefits of Global High Resolution for Climate Simulation: Process Understanding and the Enabling of Stakeholder Decisions at the Regional Scale. Bulletin of the American Meteorological Society, 2018, 99, 2341-2359.	3.3	107
56	Decadal Variability of Eddy Characteristics and Energetics in the Kuroshio Extension: Unstable Versus Stable States. Journal of Geophysical Research: Oceans, 2018, 123, 6653-6669.	2.6	24
57	Satellite-Observed Precipitation Response to Ocean Mesoscale Eddies. Journal of Climate, 2018, 31, 6879-6895.	3.2	35
58	A teleconnection between Atlantic sea surface temperature and eastern and central North Pacific tropical cyclones. Geophysical Research Letters, 2017, 44, 1167-1174.	4.0	32
59	Oceanic ensemble forecasting in the Gulf of Mexico: An application to the case of the Deep Water Horizon oil spill. Ocean Modelling, 2017, 113, 171-184.	2.4	9
60	Importance of Resolving Kuroshio Front and Eddy Influence in Simulating the North Pacific Storm Track. Journal of Climate, 2017, 30, 1861-1880.	3.2	115
61	Climate Impacts of CALIPSOâ€Guided Corrections to Black Carbon Aerosol Vertical Distributions in a Global Climate Model. Geophysical Research Letters, 2017, 44, 10,549.	4.0	0
62	Intrabasin Variability of East Pacific Tropical Cyclones During ENSO Regulated by Central American Gap Winds. Scientific Reports, 2017, 7, 1658.	3.3	14
63	Mesoscale Eddies in the Northwestern Pacific Ocean: Threeâ€Dimensional Eddy Structures and Heat/Salt Transports. Journal of Geophysical Research: Oceans, 2017, 122, 9795-9813.	2.6	53
64	Deglacial Tropical Atlantic subsurface warming links ocean circulation variability to the West African Monsoon. Scientific Reports, 2017, 7, 15390.	3.3	5
65	Structure and dynamics of the Benguela low-level coastal jet. Climate Dynamics, 2017, 49, 2765-2788.	3.8	37
66	High Resolution Model Intercomparison Project (HighResMIPÂv1.0) for CMIP6. Geoscientific Model Development, 2016, 9, 4185-4208.	3.6	643
67	Challenges and Prospects for Reducing Coupled Climate Model SST Biases in the Eastern Tropical Atlantic and Pacific Oceans: The U.S. CLIVAR Eastern Tropical Oceans Synthesis Working Group. Bulletin of the American Meteorological Society, 2016, 97, 2305-2328.	3.3	116
68	Atmospheric Conditions Associated with Labrador Sea Deep Convection: New Insights from a Case Study of the 2006/07 and 2007/08 Winters. Journal of Climate, 2016, 29, 5281-5297.	3.2	14
69	Overlooked Role of Mesoscale Winds in Powering Ocean Diapycnal Mixing. Scientific Reports, 2016, 6, 37180.	3.3	4
70	Observed 3D Structure, Generation, and Dissipation of Oceanic Mesoscale Eddies in the South China Sea. Scientific Reports, 2016, 6, 24349.	3.3	202
71	An Equatorial–Extratropical Dipole Structure of the Atlantic Niño. Journal of Climate, 2016, 29, 7295-7311.	3.2	54
72	Modulation of Small-Scale Superinertial Internal Waves by Near-Inertial Internal Waves. Journal of Physical Oceanography, 2016, 46, 3529-3548.	1.7	5

#	Article	IF	CITATIONS
73	Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 2016, 535, 533-537.	27.8	236
74	Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Niño. Nature Geoscience, 2016, 9, 155-160.	12.9	56
75	Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?. Scientific Reports, 2015, 5, 17785.	3.3	141
76	Thermodynamic controls of the Atlantic Niño. Nature Communications, 2015, 6, 8895.	12.8	81
77	Tropical North Atlantic subsurface warming events as a fingerprint for AMOC variability during Marine Isotope Stage 3. Paleoceanography, 2015, 30, 1425-1436.	3.0	22
78	Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes. Bulletin of the American Meteorological Society, 2015, 96, 997-1017.	3.3	158
79	Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes. Bulletin of the American Meteorological Society, 2015, 96, 1440.	3.3	2
80	Role of Near-Inertial Internal Waves in Subthermocline Diapycnal Mixing in the Northern Gulf of Mexico. Journal of Physical Oceanography, 2015, 45, 3137-3154.	1.7	12
81	Winter Extreme Flux Events in the Kuroshio and Gulf Stream Extension Regions and Relationship with Modes of North Pacific and Atlantic Variability. Journal of Climate, 2015, 28, 4950-4970.	3.2	17
82	Tropical Pacific response to continental ice sheet topography. Climate Dynamics, 2015, 44, 2429-2446.	3.8	25
83	Impact of Atlantic SST and high frequency atmospheric variability on the 1993 and 2008 Midwest floods: Regional climate model simulations of extreme climate events. Climatic Change, 2015, 129, 397-411.	3.6	21
84	Diagnosing southeast tropical Atlantic SST and ocean circulation biases in the CMIP5 ensemble. Climate Dynamics, 2014, 43, 3123-3145.	3.8	83
85	Tropical Atlantic variability and coupled model climate biases: results from the Tropical Atlantic Climate Experiment (TACE). Climate Dynamics, 2014, 43, 2887-2887.	3.8	3
86	The Impact of the El Niño–Southern Oscillation and Atlantic Meridional Mode on Seasonal Atlantic Tropical Cyclone Activity. Journal of Climate, 2014, 27, 5311-5328.	3.2	82
87	Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events. Nature Geoscience, 2014, 7, 144-150.	12.9	94
88	Oceanic origin of southeast tropical Atlantic biases. Climate Dynamics, 2014, 43, 2915-2930.	3.8	52
89	Seasonal Variation of the Subtropical/Tropical Pathways in the Atlantic Ocean from an Ocean Data Assimilation Experiment. Geophysical Monograph Series, 2013, , 305-318.	0.1	3
90	Influence of Mean Flow on the ENSO–Vertical Wind Shear Relationship over the Northern Tropical Atlantic. Journal of Climate, 2012, 25, 858-864.	3.2	13

#	Article	IF	CITATIONS
91	Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures. Proceedings of the United States of America, 2012, 109, 14348-14352.	7.1	59
92	Ocean barrier layers' effect on tropical cyclone intensification. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14343-14347.	7.1	202
93	An investigation of tropical Atlantic bias in a high-resolution coupled regional climate model. Climate Dynamics, 2012, 39, 2443-2463.	3.8	48
94	Enhanced warming over the global subtropical western boundary currents. Nature Climate Change, 2012, 2, 161-166.	18.8	564
95	Warm pool variability and heat flux change in the global oceans. Global and Planetary Change, 2011, 77, 26-33.	3.5	14
96	Plausible effect of climate model bias on abrupt climate change simulations in Atlantic sector. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58, 1904-1913.	1.4	5
97	Effect of Atlantic Meridional Overturning Circulation on Tropical Atlantic Variability: A Regional Coupled Model Study. Journal of Climate, 2011, 24, 3323-3343.	3.2	11
98	A Far-Reaching Footprint of the Tropical Pacific Meridional Mode on the Summer Rainfall over the Yellow River Loop Valley. Journal of Climate, 2011, 24, 2585-2598.	3.2	25
99	The Role of the Wind–Evaporation–Sea Surface Temperature (WES) Feedback as a Thermodynamic Pathway for the Equatorward Propagation of High-Latitude Sea Ice–Induced Cold Anomalies. Journal of Climate, 2011, 24, 1350-1361.	3.2	23
100	Free and Forced Variability of the Tropical Atlantic Ocean: Role of the Wind–Evaporation–Sea Surface Temperature Feedback. Journal of Climate, 2010, 23, 5958-5977.	3.2	20
101	Effect of Atlantic Meridional Overturning Circulation Changes on Tropical Atlantic Sea Surface Temperature Variability: A 2½-Layer Reduced-Gravity Ocean Model Study. Journal of Climate, 2010, 23, 312-332.	3.2	13
102	The Impact of Extratropical Atmospheric Variability on ENSO: Testing the Seasonal Footprinting Mechanism Using Coupled Model Experiments. Journal of Climate, 2010, 23, 2885-2901.	3.2	214
103	Causes of tropical Atlantic paleoâ€salinity variation during periods of reduced AMOC. Geophysical Research Letters, 2010, 37, .	4.0	10
104	Linking the Pacific Meridional Mode to ENSO: Coupled Model Analysis. Journal of Climate, 2009, 22, 3488-3505.	3.2	59
105	The role of the wind-evaporation-sea surface temperature (WES) feedback in air–sea coupled tropical variability. Atmospheric Research, 2009, 94, 19-36.	4.1	13
106	Tropical Atlantic climate response to lowâ€latitude and extratropical seaâ€surface temperature: A Little Ice Age perspective. Geophysical Research Letters, 2009, 36, .	4.0	10
107	On the interpretation of Caribbean paleoâ€ŧemperature reconstructions during the Younger Dryas. Geophysical Research Letters, 2009, 36, .	4.0	26
108	Pacific Climate Change and ENSO Activity in the Mid-Holocene. Journal of Climate, 2009, 22, 923-939.	3.2	47

#	Article	IF	CITATIONS
109	Linking the Pacific Meridional Mode to ENSO: Utilization of a Noise Filter. Journal of Climate, 2009, 22, 905-922.	3.2	14
110	Oceanic link between abrupt changes inÂthe North Atlantic Ocean and theÂAfricanÂmonsoon. Nature Geoscience, 2008, 1, 444-448.	12.9	136
111	Atmospheric response to Atlantic tropical instability waves in Community Atmosphere Model version 3. Journal of Geophysical Research, 2008, 113, .	3.3	1
112	Variation of mean sea surface temperature and modulation of El Niño–Southern Oscillation variance during the past 150 years. Geophysical Research Letters, 2008, 35, .	4.0	18
113	Interhemispheric thermal gradient and tropical Pacific climate. Geophysical Research Letters, 2008, 35,	4.0	31
114	Forecasting Pacific SSTs: Linear Inverse Model Predictions of the PDO. Journal of Climate, 2008, 21, 385-402.	3.2	126
115	A Linear Stability Analysis of Coupled Tropical Atlantic Variability. Journal of Climate, 2008, 21, 2421-2436.	3.2	22
116	Coupled Variability and Predictability in a Stochastic Climate Model of the Tropical Atlantic. Journal of Climate, 2008, 21, 6247-6259.	3.2	19
117	Pacific meridional mode and El Niño—Southern Oscillation. Geophysical Research Letters, 2007, 34, .	4.0	289
118	The Physical Basis for Predicting Atlantic Sector Seasonal-to-Interannual Climate Variability*. Journal of Climate, 2006, 19, 5949-5970.	3.2	101
119	The cause of the fragile relationship between the Pacific El Niño and the Atlantic Niño. Nature, 2006, 443, 324-328.	27.8	206
120	Climate Fluctuations of Tropical Coupled Systems—The Role of Ocean Dynamics. Journal of Climate, 2006, 19, 5122-5174.	3.2	203
121	The Community Climate System Model Version 3 (CCSM3). Journal of Climate, 2006, 19, 2122-2143.	3.2	2,075
122	Simulated precipitation response to SST forcing and potential predictability in the region of the South Atlantic convergence zone. Climate Dynamics, 2005, 24, 105-114.	3.8	38
123	Dynamics of the boreal summer African monsoon in the NSIPP1 atmospheric model. Climate Dynamics, 2005, 25, 517-535.	3.8	58
124	Dynamical elements of predicting boreal spring tropical Atlantic sea-surface temperatures. Dynamics of Atmospheres and Oceans, 2005, 39, 61-85.	1.8	31
125	The Role of Stochastic Forcing in Modulating ENSO Predictability. Journal of Climate, 2004, 17, 3125-3140.	3.2	66
126	The preconditioning role of Tropical Atlantic Variability in the development of the ENSO teleconnection: implications for the prediction of Nordeste rainfall. Climate Dynamics, 2004, 22, 839-855.	3.8	120

Ping Chang

#	Article	IF	CITATIONS
127	A linear tendency correction technique for improving seasonal prediction of SST. Geophysical Research Letters, 2004, 31, .	4.0	5
128	Predictability of Linear Coupled Systems. Part II: An Application to a Simple Model of Tropical Atlantic Variability. Journal of Climate, 2004, 17, 1487-1503.	3.2	13
129	Predictability of Linear Coupled Systems. Part I: Theoretical Analyses. Journal of Climate, 2004, 17, 1474-1486.	3.2	24
130	Effect of Oceanic Advection on the Potential Predictability of Sea Surface Temperature. Journal of Climate, 2004, 17, 3603-3615.	3.2	6
131	Tropical Atlantic seasonal predictability: The roles of El Niño remote influence and thermodynamic air-sea feedback. Geophysical Research Letters, 2003, 30, n/a-n/a.	4.0	45
132	Testing the stochastic mechanism for low-frequency variations in ENSO predictability. Geophysical Research Letters, 2003, 30, .	4.0	5
133	Oceanic Forcing of Sahel Rainfall on Interannual to Interdecadal Time Scales. Science, 2003, 302, 1027-1030.	12.6	904
134	Predictable Component Analysis, Canonical Correlation Analysis, and Autoregressive Models. Journals of the Atmospheric Sciences, 2003, 60, 409-416.	1.7	29
135	Some theoretical considerations on predictability of linear stochastic dynamics. Tellus, Series A: Dynamic Meteorology and Oceanography, 2003, 55, 148-157.	1.7	6
136	Variability of the South Atlantic Convergence Zone Simulated by an Atmospheric General Circulation Model. Journal of Climate, 2002, 15, 745-763.	3.2	90
137	Decadal change in the south tropical Pacific in a Clobal Assimilation Analysis. Geophysical Research Letters, 2001, 28, 3461-3464.	4.0	27
138	A Hybrid Coupled Model Study of Tropical Atlantic Variability. Journal of Climate, 2001, 14, 361-390.	3.2	110
139	Looking for the Role of the Ocean in Tropical Atlantic Decadal Climate Variability*. Journal of Climate, 2001, 14, 638-655.	3.2	41
140	North Atlantic climate variability: phenomena, impacts and mechanisms. International Journal of Climatology, 2001, 21, 1863-1898.	3.5	860
141	The Effect of Local Sea Surface Temperatures on Atmospheric Circulation over the Tropical Atlantic Sector. Journal of Climate, 2000, 13, 2195-2216.	3.2	195
142	Identification of Dynamical Regimes in an Intermediate Coupled Ocean–Atmosphere Model. Journal of Climate, 2000, 13, 2105-2115.	3.2	30
143	Interaction between Tropical Atlantic Variability and El Niño–Southern Oscillation. Journal of Climate, 2000, 13, 2177-2194.	3.2	319
144	Oceanic mixed layer feedback and tropical Atlantic variability. Geophysical Research Letters, 1999, 26, 3629-3632.	4.0	21

#	Article	IF	CITATIONS
145	Stochastically induced climate shift of El Niño-Southern Oscillation. Geophysical Research Letters, 1999, 26, 2473-2476.	4.0	28
146	Mixing induced by the Atlantic equatorial wave activity in an eddy-resolving OGCM. Journal of Geophysical Research, 1999, 104, 13303-13315.	3.3	4
147	Prediction of tropical Atlantic sea surface temperature. Geophysical Research Letters, 1998, 25, 1193-1196.	4.0	30
148	Does the Predictability of ENSO Depend on the Seasonal Cycle?. Journals of the Atmospheric Sciences, 1998, 55, 3230-3243.	1.7	39
149	Impact of the extratropical Pacific on equatorial variability. Geophysical Research Letters, 1997, 24, 2589-2592.	4.0	81
150	A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature, 1997, 385, 516-518.	27.8	585
151	Impact of dynamical and stochastic processes on the predictability of ENSO. Geophysical Research Letters, 1996, 23, 2089-2092.	4.0	30
152	A wave-induced stirring mechanism in the mid-depth equatorial ocean. Journal of Marine Research, 1996, 54, 487-520.	0.3	15
153	The Role of the Dynamic Ocean-Atmosphere Interactions in Tropical Seasonal Cycle. Journal of Climate, 1996, 9, 2973-2985.	3.2	31
154	Chaotic dynamics versus stochastic processes in El Niño-Southern Oscillation in coupled ocean-atmosphere models. Physica D: Nonlinear Phenomena, 1996, 98, 301-320.	2.8	93
155	Interactions between the Seasonal Cycle and El Niño-Southern Oscillation in an Intermediate Coupled Ocean-Atmosphere Model. Journals of the Atmospheric Sciences, 1995, 52, 2353-2372.	1.7	104
156	An Intermediate Model of the Tropical Pacific Ocean. Journal of Physical Oceanography, 1995, 25, 1599-1616.	1.7	58
157	A study of the seasonal cycle of sea surface temperature in the tropical Pacific Ocean using reduced gravity models. Journal of Geophysical Research, 1994, 99, 7725.	3.3	57
158	Interactions between the seasonal cycle and the Southern Oscillation - Frequency entrainment and chaos in a coupled ocean-atmosphere model. Geophysical Research Letters, 1994, 21, 2817-2820.	4.0	133
159	A Coupled Ocean–Atmosphere Instability of Relevance to the Seasonal Cycle. Journals of the Atmospheric Sciences, 1994, 51, 3627-3648.	1.7	105
160	A note on solitary waves along potential vorticity fronts on anf-plane. Journal of Oceanography, 1993, 49, 477-489.	1.7	0
161	Seasonal cycle of sea surface temperature and mixed layer heat budget in the tropical Pacific Ocean. Geophysical Research Letters, 1993, 20, 2079-2082.	4.0	30
162	Coastal Kelvin waves in the presence of a slowly varying topography. Journal of Fluid Mechanics, 1991, 231, 303-324.	3.4	2

#	Article	IF	CITATIONS
163	Variability of the sea surface temperature in the eastern equatorial Pacific during 1986–1988. Journal of Geophysical Research, 1991, 96, 10553-10566.	3.3	86
164	Propagation of an Equatorial Kelvin Wave in a Varying Thermocline. Journal of Physical Oceanography, 1990, 20, 1826-1841.	1.7	35
165	Oceanic adjustment in the presence of mean currents on an equatorial <i>β</i> plane. Journal of Geophysical Research, 1990, 95, 15975-15995.	3.3	2
166	Rossby wave packets in baroclinic mean currents. Deep-sea Research Part A, Oceanographic Research Papers, 1989, 36, 17-37.	1.5	40
167	Quasi-geostrophic oceanic adjustment in the presence of mean currents. Dynamics of Atmospheres and Oceans, 1989, 14, 387-414.	1.8	0
168	On the Role of the South Atlantic Atmospheric Circulation in Tropical Atlantic Variability. Geophysical Monograph Series, 0, , 143-156.	0.1	14
169	Thermodynamic Coupling and Predictability of Tropical Sea Surface Temperature. Geophysical Monograph Series, 0, , 171-180.	0.1	15