Graham A Mackay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6741934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Goat milk skin products may cause the development of goat milk allergy. Clinical and Experimental Allergy, 2022, 52, 706-710.	2.9	2
2	The first reptilian allergen and major allergen for fishâ€allergic patients: Crocodile βâ€parvalbumin. Pediatric Allergy and Immunology, 2022, 33, .	2.6	11
3	MRGPRX2 activation in mast cells by neuromuscular blocking agents and other agonists: Modulation by sugammadex. Clinical and Experimental Allergy, 2021, 51, 685-695.	2.9	21
4	Reply to correspondence of Elst <i>etal</i> . Clinical and Experimental Allergy, 2021, 51, 978-979.	2.9	0
5	Fc Binding by FcγRIIa Is Essential for Cellular Activation by the Anti-FcγRIIa mAbs 8.26 and 8.2. Frontiers in Immunology, 2021, 12, 666813.	4.8	2
6	Antibody or Anybody? Considering the Role of MRGPRX2 in Acute Drug-Induced Anaphylaxis and as a Therapeutic Target. Frontiers in Immunology, 2021, 12, 688930.	4.8	11
7	Identification of an Immortalized Human Airway Epithelial Cell Line with Dyskinetic Cilia. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 375-382.	2.9	9
8	The Rare Anaphylaxis-Associated Fcl̂³RIIa3 Exhibits Distinct Characteristics From the Canonical Fcl̂³RIIa1. Frontiers in Immunology, 2018, 9, 1809.	4.8	7
9	The MS4A family: counting past 1, 2 and 3. Immunology and Cell Biology, 2016, 94, 11-23.	2.3	105
10	Plasminogen-Stimulated Inflammatory Cytokine Production by Airway Smooth Muscle Cells Is Regulated by Annexin A2. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 751-758.	2.9	20
11	Fcε Receptor Expression in Human Airway Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 560-560.	2.9	1
12	Human mast cell line-1 (HMC-1) cells transfected with FcεRIα are sensitive to IgE/antigen-mediated stimulation demonstrating selectivity towards cytokine production. International Immunopharmacology, 2011, 11, 1002-1011.	3.8	20
13	R2D ₂ for C ₄ Eo: an â€~alliance' of PGD ₂ receptors is required for LTC ₄ production by human eosinophils. British Journal of Pharmacology, 2011, 162, 1671-1673.	5.4	2
14	Functional Expression of IgC-Fc Receptors in Human Airway Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 665-672.	2.9	27
15	Co-aggregation of FcγRII with FcϵRI on Human Mast Cells Inhibits Antigen-induced Secretion and Involves SHIP-Grb2-Dok Complexes. Journal of Biological Chemistry, 2004, 279, 35139-35149.	3.4	104
16	The Src kinase Lyn is a negative regulator of mast cell proliferation. Journal of Leukocyte Biology, 2004, 75, 143-151.	3.3	38
17	Mutagenesis Within Human FcεRIα Differentially Affects Human and Murine IgE Binding. Journal of Immunology, 2002, 168, 1787-1795.	0.8	12
18	Domain One of the High Affinity IgE Receptor, FcεRI, Regulates Binding to IgE through Its Interface with Domain Two. Journal of Biological Chemistry, 2000, 275, 9664-9672.	3.4	13

#	Article	IF	CITATIONS
19	Comparison of IgE and IgG antibody-dependent cytotoxicityin vitro and in a SCID mouse xenograft model of ovarian carcinoma. European Journal of Immunology, 1999, 29, 3527-3537.	2.9	104
20	Participation of the N-Terminal Region of Cε3 in the Binding of Human IgE to Its High-Affinity Receptor FcεRlâ€. Biochemistry, 1997, 36, 15568-15578.	2.5	71
21	Secretion of recombinant human IgE-Fc by mammalian cells and biological activity of glycosylation site mutants. Protein Engineering, Design and Selection, 1995, 8, 193-199.	2.1	51