Daniel Condon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6741549/publications.pdf

Version: 2024-02-01

89 papers 12,504 citations

45 h-index 49909 87 g-index

107 all docs

107 docs citations

107 times ranked

8124 citing authors

#	Article	IF	Citations
1	Anomalous weathering trends indicate accelerated erosion of tropical basaltic landscapes during the Permo-Triassic warming. Earth and Planetary Science Letters, 2022, 577, 117256.	4.4	14
2	Calibrating the temporal and spatial dynamics of the Ediacaran - Cambrian radiation of animals. Earth-Science Reviews, 2022, 225, 103913.	9.1	39
3	A Chronostratigraphic Framework for the Rise of the Ediacaran Macrobiota: New Constraints from Mistaken Point Ecological Reserve, Newfoundland. Bulletin of the Geological Society of America, 2021, 133, 612-624.	3.3	49
4	A Synthetic Haematite Reference Material for LAâ€ICPâ€MS Uâ€Pb Geochronology and Application to Iron Oxideâ€Cuâ€Au Systems. Geostandards and Geoanalytical Research, 2021, 45, 143-159.	3.1	3
5	Radiometric Dating (U-Th-Pb)., 2021,, 26-49.		O
6	A Consistently Highâ€Latitude South China From 820 to 780ÂMa: Implications for Exclusion From Rodinia and the Feasibility of Largeâ€Scale True Polar Wander. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021541.	3.4	16
7	Development and Application of Synthetic Hematite Reference Material for U-Pb Geochronology. Microscopy and Microanalysis, 2021, 27, 2742-2745.	0.4	0
8	The tempo of Ediacaran evolution. Science Advances, 2021, 7, eabi9643.	10.3	80
9	Accuracy and precision of the late Eocene–early Oligocene geomagnetic polarity time scale. Bulletin of the Geological Society of America, 2020, 132, 373-388.	3.3	5
10	OPENING THE MAGMATIC-HYDROTHERMAL WINDOW: HIGH-PRECISION U-Pb GEOCHRONOLOGY OF THE MESOPROTEROZOIC OLYMPIC DAM Cu-U-Au-Ag DEPOSIT, SOUTH AUSTRALIA. Economic Geology, 2020, 115, 1855-1870.	3.8	34
11	The Great Oxidation Event preceded a Paleoproterozoic "snowball Earth― Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13314-13320.	7.1	90
12	A chronostratigraphic framework for the upper Stormberg Group: Implications for the Triassic-Jurassic boundary in southern Africa. Earth-Science Reviews, 2020, 203, 103120.	9.1	55
13	Enhanced continental weathering and large igneous province induced climate warming at the Permo-Carboniferous transition. Earth and Planetary Science Letters, 2020, 534, 116074.	4.4	45
14	U-Pb and Re-Os geochronology tracks stratigraphic condensation in the Sturtian snowball Earth aftermath. Geology, 2020, 48, 625-629.	4.4	57
15	Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb carbonate geochronology: strategies, progress, and limitations. Geochronology, 2020, 2, 33-61.	2.5	129
16	Astrochronology and radio-isotopic dating of the Alano di Piave section (NE Italy), candidate GSSP for the Priabonian Stage (late Eocene). Earth and Planetary Science Letters, 2019, 525, 115746.	4.4	7
17	A 160,000-year-old history of tectonically controlled methane seepage in the Arctic. Science Advances, 2019, 5, eaaw1450.	10.3	60
18	A multi-technique evaluation of hydrothermal hematite U Pb isotope systematics: Implications for ore deposit geochronology. Chemical Geology, 2019, 513, 54-72.	3.3	36

#	Article	IF	CITATIONS
19	Discovery of an Extensive Deep-Sea Fossil Serpulid Reef Associated With a Cold Seep, Santa Monica Basin, California. Frontiers in Marine Science, 2019, 6, .	2.5	11
20	Early Wuchiapingian cooling linked to Emeishan basaltic weathering?. Earth and Planetary Science Letters, 2018, 492, 102-111.	4.4	58
21	Geochronological constraint on the Cambrian Chengjiang biota, South China. Journal of the Geological Society, 2018, 175, 659-666.	2.1	50
22	LGC-1: A zircon reference material for in-situ (U-Th)/He dating. Chemical Geology, 2017, 454, 80-92.	3.3	20
23	Geochronological constraints on stratigraphic correlation and oceanic oxygenation in Ediacaran-Cambrian transition in South China. Journal of Asian Earth Sciences, 2017, 140, 75-81.	2.3	43
24	Using ignimbrites to quantify structural relief growth and understand deformation processes: Implications for the development of the Western Andean Slope, northernmost Chile. Lithosphere, 2017, 9, 29-45.	1.4	11
25	SIMS U–Pb zircon geochronological constraints on upper Ediacaran stratigraphic correlations, South China. Geological Magazine, 2017, 154, 1202-1216.	1.5	31
26	Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil. Nature Ecology and Evolution, 2017, 1, 1455-1464.	7.8	95
27	A calcite reference material for LAâ€ICPâ€MS Uâ€Pb geochronology. Geochemistry, Geophysics, Geosystems, 2017, 18, 2807-2814.	2.5	213
28	Reducing Disparity in Radioâ€Isotopic and Astrochronologyâ€Based Time Scales of the Late Eocene and Oligocene. Paleoceanography, 2017, 32, 1018-1035.	3.0	18
29	Cyclic Magmatic-Hydrothermal Evolution in Porphyry Systems: High-Precision U-Pb and Re-Os Geochronology Constraints on the Tibetan Qulong Porphyry Cu-Mo Deposit*. Economic Geology, 2017, 112, 1419-1440.	3 . 8	89
30	Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet. Nature Communications, 2016, 7, 11509.	12.8	125
31	Communityâ€Derived Standards for <scp>LA</scp> â€ <scp>lCP</scp> â€ <scp>MS</scp> Uâ€(Thâ€)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting. Geostandards and Geoanalytical Research, 2016, 40, 311-332.	3.1	570
32	Duration and nature of the end-Cryogenian (Marinoan) glaciation. Geology, 2016, 44, 631-634.	4.4	129
33	Geology and geochronology of the Tana Basin, Ethiopia: LIP volcanism, super eruptions and Eocene–Oligocene environmental change. Earth and Planetary Science Letters, 2016, 443, 1-8.	4.4	68
34	Rapid thermal rejuvenation of high-crystallinity magma linked to porphyry copper deposit formation; evidence from the Koloula Porphyry Prospect, Solomon Islands. Earth and Planetary Science Letters, 2016, 442, 206-217.	4.4	76
35	Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration) Tj ETQq1 I	l 0 <u>,7</u> 8431	4 rgBT /Over
36	Stratigraphy and geochronology of the Tambien Group, Ethiopia: Evidence for globally synchronous carbon isotope change in the Neoproterozoic. Geology, 2015, 43, 323-326.	4.4	69

#	Article	IF	Citations
37	Synchronizing terrestrial and marine records of environmental change across the Eocene–Oligocene transition. Earth and Planetary Science Letters, 2015, 427, 171-182.	4.4	21
38	Kinetics of CO2–fluid–rock reactions in a basalt aquifer, Soda Springs, Idaho. Applied Geochemistry, 2015, 61, 272-283.	3.0	10
39	Multiple Palaeoproterozoic carbon burial episodes and excursions. Earth and Planetary Science Letters, 2015, 424, 226-236.	4.4	52
40	Pacific 187 Os/ 188 Os isotope chemistry and U–Pb geochronology: Synchroneity of global Os isotope change across OAE 2. Earth and Planetary Science Letters, 2015, 428, 204-216.	4.4	73
41	Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II). Geochimica Et Cosmochimica Acta, 2015, 164, 481-501.	3.9	213
42	U-Pb geochronology and global context of the Charnian Supergroup, UK: Constraints on the age of key Ediacaran fossil assemblages. Bulletin of the Geological Society of America, 2015, 127, 250-265.	3.3	37
43	Precise ages of the Réunion event and Huckleberry Ridge excursion: Episodic clustering of geomagnetic instabilities and the dynamics of flow within the outer core. Earth and Planetary Science Letters, 2014, 405, 25-38.	4.4	40
44	Integrating 40Ar/39Ar, U-Pb, and astronomical clocks in the Cretaceous Niobrara Formation, Western Interior Basin, USA. Bulletin of the Geological Society of America, 2014, 126, 956-973.	3.3	105
45	Palaeoproterozoic orogenic gold style mineralization at the Southwestern Archaean Tanzanian cratonic margin, Lupa Goldfield, SW Tanzania: Implications from U–Pb titanite geochronology. Gondwana Research, 2014, 26, 1141-1158.	6.0	21
46	Characterising the U–Th–Pb systematics of allanite by ID and LA-ICPMS: Implications for geochronology. Geochimica Et Cosmochimica Acta, 2014, 135, 1-28.	3.9	41
47	Earth's earliest global glaciation? Carbonate geochemistry and geochronology of the Polisarka Sedimentary Formation, Kola Peninsula, Russia. Precambrian Research, 2013, 235, 278-294.	2.7	40
48	Lithogeochemistry, geochronology and geodynamic setting of the Lupa Terrane, Tanzania: Implications for the extent of the Archean Tanzanian Craton. Precambrian Research, 2013, 231, 174-193.	2.7	45
49	UPb LA-(MC)-ICP-MS dating of rutile: New reference materials and applications to sedimentary provenance. Chemical Geology, 2013, 347, 82-101.	3.3	79
50	Dating the termination of the Palaeoproterozoic Lomagundi-Jatuli carbon isotopic event in the North Transfennoscandian Greenstone Belt. Precambrian Research, 2013, 224, 160-168.	2.7	46
51	A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi–Jatuli Event). Earth-Science Reviews, 2013, 127, 242-261.	9.1	96
52	One Hundred Years of Isotope Geochronology, and Counting. Elements, 2013, 9, 15-17.	0.5	25
53	Precision and Accuracy in Geochronology. Elements, 2013, 9, 19-24.	0.5	93
54	7.3 The Palaeoproterozoic Perturbation of the Global Carbon Cycle: The Lomagundi-Jatuli Isotopic Event. Frontiers in Earth Sciences, 2013, , 1111-1150.	0.1	9

#	Article	IF	Citations
55	Stratigraphic, geochemical and U–Pb zircon constraints from Slieve Gallion, Northern Ireland: a correlation of the Irish Caledonian arcs. Journal of the Geological Society, 2013, 170, 737-752.	2.1	10
56	Nature and timing of Late Mississippian to Mid-Pennsylvanian glacio-eustatic sea-level changes of the Pennine Basin, UK: Discussion Reply. Journal of the Geological Society, 2013, 170, 850-850.	2.1	1
57	Evolution of the Tyrone ophiolite, Northern Ireland, during the Grampian–Taconic orogeny: a correlative of the Annieopsquotch Ophiolite Belt of central Newfoundland?. Journal of the Geological Society, 2013, 170, 861-876.	2.1	26
58	Dating the Cambrian Purley Shale Formation, Midland Microcraton, England. Geological Magazine, 2013, 150, 937-944.	1.5	11
59	Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian-Turonian boundary interval, Western Interior Basin, USA. Geology, 2012, 40, 7-10.	4.4	177
60	The first animals: ca. 760-million-year-old sponge-like fossils from Namibia. South African Journal of Science, 2012, 108, .	0.7	63
61	U-Pb (zircon) age constraints on the timing and duration of Wenlock (Silurian) paleocommunity collapse and recovery during the "Big Crisis". Bulletin of the Geological Society of America, 2012, 124, 1841-1857.	3.3	70
62	Episodic arc-ophiolite emplacement and the growth of continental margins: Late accretion in the Northern Irish sector of the Grampian-Taconic orogeny. Bulletin of the Geological Society of America, 2012, 124, 1702-1723.	3.3	37
63	Nature and timing of Late Mississippian to Mid-Pennsylvanian glacio-eustatic sea-level changes of the Pennine Basin, UK. Journal of the Geological Society, 2012, 169, 37-51.	2.1	94
64	²³⁸ U/ ²³⁵ U Systematics in Terrestrial Uranium-Bearing Minerals. Science, 2012, 335, 1610-1614.	12.6	542
65	Integrated Ladinian bio-chronostratigraphy and geochrononology of Monte San Giorgio (Southern) Tj $$ ETQq 11 C	.784314 r	gBŢ/Overloc
66	Examining the case for the use of the Tertiary as a formal period or informal unit. Proceedings of the Geologists Association, 2012, 123, 390-393.	1.1	6
67	Chapter 9 A user's guide to Neoproterozoic geochronology. Geological Society Memoir, 2011, 36, 135-149.	1.7	28
68	Constraints on the numerical age of the Paleocene-Eocene boundary. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	114
69	Rapid formation and exhumation of the youngest Alpine eclogites: A thermal conundrum to Barrovian metamorphism. Earth and Planetary Science Letters, 2011, 306, 193-204.	4.4	45
70	A refined chronology for the Cambrian succession of southern Britain. Journal of the Geological Society, 2011, 168, 705-716.	2.1	49
71	Isotopic composition (238U/235U) of some commonly used uranium reference materials. Geochimica Et Cosmochimica Acta, 2010, 74, 7127-7143.	3.9	109
72	Lithostratigraphy, sedimentation and evolution of the Volta Basin in Ghana. Precambrian Research, 2010, 183, 701-724.	2.7	48

#	Article	IF	CITATIONS
73	Reply to comment: Oman Chronostratigraphy: (Reply to comment by Erwan Le Guerroue, Ruben Rieu) Tj ETQq1	1 0.7843 1.4	l 4 rgBT /Over 8
74	Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature, 2009, 457, 718-721.	27.8	611
75	U–Pb and Re–Os geochronology of the Aptian/Albian and Cenomanian/Turonian stage boundaries: Implications for timescale calibration, osmium isotope seawater composition and Re–Os systematics in organic-rich sediments. Chemical Geology, 2009, 265, 394-409.	3.3	88
76	Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 2008, 249, 1-35.	3.3	3,858
77	Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Numerische Mathematik, 2007, 307, 1097-1145.	1.4	358
78	Temporal constraints on the Paleoproterozoic Lomagundi-Jatuli carbon isotopic event. Geology, 2007, 35, 655.	4.4	146
79	Reassessing the uranium decay constants for geochronology using ID-TIMS U–Pb data. Geochimica Et Cosmochimica Acta, 2006, 70, 426-445.	3.9	406
80	High-Precision U-Pb Zircon Geochronology and the Stratigraphic Record: Progress and Promise. The Paleontological Society Papers, 2006, 12, 25-45.	0.6	23
81	Laser ablation 40Ar/39Ar dating of metamorphic fabrics in the Caledonides of north Ireland. Journal of the Geological Society, 2006, 163, 337-345.	2.1	6
82	U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 2005, 308, 95-98.	12.6	1,083
83	U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation. Geology, 2004, 32, 817.	4.4	480
84	Neoproterozoic glacial-rainout intervals: Observations and implications. Geology, 2002, 30, 35.	4.4	97
85	Two from Donegal: Neoproterozoic glacial episodes on the northeast margin of Laurentia. Geology, 2000, 28, 951.	4.4	49
86	Cleaved clasts in Dalradian conglomerates: possible evidence for Neoproterozoic compressional tectonism in Scotland and Ireland?. Geological Journal, 2000, 35, 87-98.	1.3	9
87	Two from Donegal: Neoproterozoic glacial episodes on the northeast margin of Laurentia. Geology, 2000, 28, 951-954.	4.4	2
88	Mochras borehole revisited: a new global standard for Early Jurassic earth history. Scientific Drilling, 0, 16, 81-91.	0.6	24
89	Accelerating Neoproterozoic research through scientific drilling. Scientific Drilling, 0, 19, 17-25.	0.6	5