Heung Cho Ko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6739598/publications.pdf Version: 2024-02-01

HELING CHO KO

#	Article	IF	CITATIONS
1	A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454, 748-753.	27.8	1,211
2	Charge-transfer-based Gas Sensing Using Atomic-layer MoS2. Scientific Reports, 2015, 5, 8052.	3.3	489
3	Chemical Sensing of 2D Graphene/MoS ₂ Heterostructure device. ACS Applied Materials & Interfaces, 2015, 7, 16775-16780.	8.0	375
4	Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements. Small, 2009, 5, 2703-2709.	10.0	233
5	Graphene-based gas sensor: metal decoration effect and application to a flexible device. Journal of Materials Chemistry C, 2014, 2, 5280-5285.	5.5	198
6	Highly Flexible and Transparent Multilayer MoS ₂ Transistors with Graphene Electrodes. Small, 2013, 9, 3295-3300.	10.0	189
7	Bifunctional Sensing Characteristics of Chemical Vapor Deposition Synthesized Atomic-Layered MoS ₂ . ACS Applied Materials & Interfaces, 2015, 7, 2952-2959.	8.0	162
8	Transfer of GaN LEDs From Sapphire to Flexible Substrates by Laser Lift-Off and Contact Printing. IEEE Photonics Technology Letters, 2012, 24, 2115-2118.	2.5	121
9	Bulk Quantities of Single-Crystal Silicon Micro-/Nanoribbons Generated from Bulk Wafers. Nano Letters, 2006, 6, 2318-2324.	9.1	96
10	Micromechanics and Advanced Designs for Curved Photodetector Arrays in Hemispherical Electronicâ€Eye Cameras. Small, 2010, 6, 851-856.	10.0	94
11	Mechanics of curvilinear electronics. Soft Matter, 2010, 6, 5757.	2.7	74
12	Robust and stretchable indium gallium zinc oxide-based electronic textiles formed by cilia-assisted transfer printing. Nature Communications, 2016, 7, 11477.	12.8	73
13	Organic nonvolatile memory devices with charge trapping multilayer graphene film. Nanotechnology, 2012, 23, 105202.	2.6	72
14	Enhancing the Charge Transfer of the Counter Electrode in Dye‣ensitized Solar Cells Using Periodically Aligned Platinum Nanocups. Small, 2012, 8, 3757-3761.	10.0	72
15	Arrays of Silicon Micro/Nanostructures Formed in Suspended Configurations for Deterministic Assembly Using Flat and Rollerâ€Type Stamps. Small, 2011, 7, 484-491.	10.0	64
16	Highâ€Responsivity Nearâ€Infrared Photodetector Using Gateâ€Modulated Graphene/Germanium Schottky Junction. Advanced Electronic Materials, 2019, 5, 1800957.	5.1	54
17	Secondary Sensitivity Control of Silverâ€Nanowireâ€Based Resistiveâ€Type Strain Sensors by Geometric Modulation of the Elastomer Substrate. Small, 2017, 13, 1700070.	10.0	53
18	Protonâ€Irradiation Effects on the Thermoelectric Properties of Flexible Bi ₂ Te ₃ /PEDOT:PSS Composite Films. Advanced Electronic Materials, 2019, 5, 1800786.	5.1	53

Heung Cho Ko

#	Article	IF	CITATIONS
19	Mechanically enhanced graphene oxide/carboxymethyl cellulose nanofibril composite fiber as a scalable adsorbent for heavy metal removal. Carbohydrate Polymers, 2020, 240, 116348.	10.2	50
20	Electrochemistry and electrochromism of the polythiophene derivative with viologen pendant. Synthetic Metals, 2002, 132, 15-20.	3.9	42
21	Metal Decoration Effects on the Gas-Sensing Properties of 2D Hybrid-Structures on Flexible Substrates. Sensors, 2015, 15, 24903-24913.	3.8	41
22	Allâ€Solutionâ€Processed Transparent Thin Film Transistor and Its Application to Liquid Crystals Driving. Advanced Materials, 2013, 25, 3209-3214.	21.0	39
23	Isoindigo-Based Donor–Acceptor Conjugated Polymers for Air-Stable Nonvolatile Memory Devices. ACS Macro Letters, 2015, 4, 322-326.	4.8	39
24	Deep-ultraviolet sensing characteristics of transparent and flexible IGZO thin film transistors. Journal of Alloys and Compounds, 2020, 817, 152788.	5.5	37
25	Omnidirectional Stretchable Inorganicâ€Materialâ€Based Electronics with Enhanced Performance. Advanced Electronic Materials, 2020, 6, 2000058.	5.1	34
26	Systematic prediction of maximum electrochromic contrast of an electrochromic material. Synthetic Metals, 2005, 155, 595-598.	3.9	33
27	Synergistic Effect of Sulfur and Chalcogen Atoms on the Enhanced Refractive Indices of Polyimides in the Visible and Near-Infrared Regions. Macromolecules, 2019, 52, 827-834.	4.8	33
28	Observation of photoluminescence in polypyrrole micelles. Synthetic Metals, 2005, 150, 127-131.	3.9	32
29	Synthesis and characterization of phosphorus- and sulfur-containing aromatic polyimides for high refractive index. Polymer, 2018, 136, 143-148.	3.8	31
30	Light-emitting electrochemical cells based on polyimide containing perylene and tri(ethylene oxide) moieties. Synthetic Metals, 2004, 144, 177-181.	3.9	28
31	Twistable nonvolatile organic resistive memory devices. Organic Electronics, 2013, 14, 2087-2092.	2.6	27
32	Electrochemistry and electrochromism of a poly(cyclopentadithiophene) derivative with a viologen pendant. Electrochimica Acta, 2003, 48, 4127-4135.	5.2	24
33	Single- and dual-type electrochromic devices based on polycarbazole derivative bearing pendent viologen. Synthetic Metals, 2006, 156, 695-698.	3.9	21
34	Ultrathin Stickerâ€Type ZnO Thin Film Transistors Formed by Transfer Printing via Topological Confinement of Waterâ€Soluble Sacrificial Polymer in Dimple Structure. Advanced Functional Materials, 2013, 23, 1375-1382.	14.9	21
35	Mechanics of hemispherical electronics. Applied Physics Letters, 2009, 95, 181912.	3.3	19
36	Double-sided printed circuit textiles based on stencil-type layer-by-layer coating with PEDOT:PSS:Ag nanowires and chitosan for electrothermochromic displays. Journal of Materials Chemistry C, 2019, 7, 14525-14534.	5.5	19

Неимс Сно Ко

#	Article	IF	CITATIONS
37	Characteristics of dual-type electrochromic device based on poly(3-tetradecylthiophene) and poly(3,4-ethylenedioxythiophene). Synthetic Metals, 2004, 143, 31-35.	3.9	18
38	Probing the photothermally induced phase transitions in single-crystalline vanadium dioxide nanobeams. Nanotechnology, 2013, 24, 345701.	2.6	18
39	Stickerâ€₹ype Alq ₃ â€Based OLEDs Based on Printable Ultrathin Substrates in Periodically Anchored and Suspended Configurations. Advanced Materials, 2013, 25, 5626-5631.	21.0	17
40	Highly Efficient Full olor Inorganic LEDs on a Single Wafer by Using Multiple Adhesive Bonding. Advanced Materials Interfaces, 2021, 8, 2100300.	3.7	16
41	Side chains contributions to characteristics of resistive memory based on water-soluble polyfluorenes: Effects of structure and length of side pendant group. Organic Electronics, 2014, 15, 1290-1298.	2.6	14
42	Light emitting polyfluorene derivatives with three different structural configurations. Synthetic Metals, 2004, 144, 193-199.	3.9	13
43	A tunable sub-100 nm silicon nanopore array with an AAO membrane mask: reducing unwanted surface etching by introducing a PMMA interlayer. Nanoscale, 2015, 7, 13489-13494.	5.6	13
44	High-Performance Implantable Bioelectrodes with Immunocompatible Topography for Modulation of Macrophage Responses. ACS Nano, 2022, 16, 7471-7485.	14.6	13
45	Demonstration of Addressable Organic Resistive Memory Utilizing a PC-Interface Memory Cell Tester. IEEE Electron Device Letters, 2013, 34, 51-53.	3.9	10
46	Enhancement of Interfacial Adhesion Using Micro/Nanoscale Hierarchical Cilia for Randomly Accessible Membrane-Type Electronic Devices. ACS Nano, 2020, 14, 118-128.	14.6	10
47	Stick-and-play system based on interfacial adhesion control enhanced by micro/nanostructures. Nano Research, 2021, 14, 3143-3158.	10.4	10
48	A Bezelâ€Less Tetrahedral Image Sensor Formed by Solventâ€Assisted Plasticization and Transformation of an Acrylonitrile Butadiene Styrene Framework. Advanced Materials, 2018, 30, e1801256.	21.0	9
49	Electrochemical Deposition of a Pyrrole-1-yl Substituted Perylene Diimide for Photoluminescence and Electrochromism. Journal of the Electrochemical Society, 2004, 151, E80.	2.9	8
50	Hexahedral LED Arrays with Row and Column Control Lines Formed by Selective Liquidâ€Phase Plasticization and Nondisruptive Tuckingâ€Based Origami. Advanced Materials Technologies, 2020, 5, 2000010.	5.8	8
51	Assignments of cyclic voltammetric peaks during electrochemical polymerization of pyrrole with viologen pendant. Synthetic Metals, 2003, 139, 439-443.	3.9	7
52	Controlled hydrothermal growth of multi-length-scale ZnO nanowires using liquid masking layers. Journal of Materials Science, 2014, 49, 8000-8009.	3.7	7
53	Formation of a Perylenetetracarboxylic Diimide Network Film by Post Electrochemical Treatment. Langmuir, 2006, 22, 9431-9435.	3.5	6
54	Enhanced Ultraviolet Photoresponse Characteristics of Indium Gallium Zinc Oxide Photo-Thin-Film Transistors Enabled by Surface Functionalization of Biomaterials for Real-Time Ultraviolet Monitoring. ACS Applied Materials & Interfaces, 2021, 13, 47784-47792.	8.0	6

Неимс Сно Ко

#	Article	IF	CITATIONS
55	Reliable peripheral anchor-assisted transfer printing of ultrathin SiO2 for a transparent and flexible IGZO-based inverter. Microelectronic Engineering, 2018, 197, 15-22.	2.4	5
56	Automatic Transformation of Membraneâ€Type Electronic Devices into Complex 3D Structures via Extrusion Shear Printing and Thermal Relaxation of Acrylonitrile–Butadiene–Styrene Frameworks. Advanced Functional Materials, 2020, 30, 1907384.	14.9	5
57	Printable ultrathin substrates formed on a concave–convex underlayer for highly flexible membrane-type electrode stickers. Soft Matter, 2012, 8, 7598.	2.7	4
58	Light-emitting diodes based on alternating copolymers containing fluorene and oligo(p-phenylenevinylene). Synthetic Metals, 2005, 151, 218-224.	3.9	3
59	Robust and Highly Conductive PEDOT:PSS:Ag Nanowires/Polyethyleneimine Multilayers Based on Ionic Layer-by-Layer Assembly for E-Textiles and 3D Electronics. ACS Applied Electronic Materials, 2022, 4, 2413-2423.	4.3	3
60	3D Image Sensors: A Bezel-Less Tetrahedral Image Sensor Formed by Solvent-Assisted Plasticization and Transformation of an Acrylonitrile Butadiene Styrene Framework (Adv. Mater. 30/2018). Advanced Materials, 2018, 30, 1870224.	21.0	1
61	Extrusion Shear Printing: Automatic Transformation of Membraneâ€Type Electronic Devices into Complex 3D Structures via Extrusion Shear Printing and Thermal Relaxation of Acrylonitrile–Butadiene–Styrene Frameworks (Adv. Funct. Mater. 5/2020). Advanced Functional Materials 2020 30 2070033	14.9	1
62	Highly Refractive Aromatic Polybenzoxazoles Derived from Sulfur-Containing Dibenzoyl Chlorides. ACS Applied Polymer Materials, 2021, 3, 4932-4939.	4.4	1
63	Corrections to "Demonstration of Addressable Organic Resistive Memory Utilizing a PC-Interface Memory Cell Tester―[Jan 13 51-53]. IEEE Electron Device Letters, 2013, 34, 468-468.	3.9	0
64	Sensors: Secondary Sensitivity Control of Silver-Nanowire-Based Resistive-Type Strain Sensors by Geometric Modulation of the Elastomer Substrate (Small 23/2017). Small, 2017, 13, .	10.0	0