Gabriel Kalil Rocha Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6739398/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 85, 57-65.	3.1	153
2	Low-temperature degradation of Y-TZP ceramics: A systematic review and meta-analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 55, 151-163.	3.1	149
3	The effect of grinding on the mechanical behavior of Y-TZP ceramics: A systematic review and meta-analyses. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 63, 417-442.	3.1	72
4	Mechanical behavior of a Y-TZP ceramic for monolithic restorations: effect of grinding and low-temperature aging. Materials Science and Engineering C, 2016, 63, 70-77.	7.3	63
5	Effect of low-temperature aging on the mechanical behavior of ground Y-TZP. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 45, 183-192.	3.1	61
6	The effect of internal roughness and bonding on the fracture resistance and structural reliability of lithium disilicate ceramic. Dental Materials, 2017, 33, 1416-1425.	3.5	60
7	Does Finishing and Polishing of Restorative Materials Affect Bacterial Adhesion and Biofilm Formation? A Systematic Review. Operative Dentistry, 2018, 43, E37-E52.	1.2	58
8	Loading frequencies up to 20 Hz as an alternative to accelerate fatigue strength tests in a Y-TZP ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61, 79-86.	3.1	57
9	Fatigue failure load of two resin-bonded zirconia-reinforced lithium silicate glass-ceramics: Effect of ceramic thickness. Dental Materials, 2018, 34, 891-900.	3.5	56
10	Effect of grinding with diamond-disc and -bur on the mechanical behavior of a Y-TZP ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37, 133-140.	3.1	55
11	Surface micro-morphology, phase transformation, and mechanical reliability of ground and aged monolithic zirconia ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 849-856.	3.1	55
12	Fatigue limit of polycrystalline zirconium oxide ceramics: Effect of grinding and low-temperature aging. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61, 45-54.	3.1	53
13	Fatigue performance of adhesively cemented glass-, hybrid- and resin-ceramic materials for CAD/CAM monolithic restorations. Dental Materials, 2019, 35, 534-542.	3.5	48
14	Fatigue failure load of zirconia-reinforced lithium silicate glass ceramic cemented to a dentin analogue: Effect of etching time and hydrofluoric acid concentration. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 375-382.	3.1	47
15	CAD-CAM milled versus pressed lithium-disilicate monolithic crowns adhesively cemented after distinct surface treatments: Fatigue performance and ceramic surface characteristics. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 94, 144-154.	3.1	47
16	Comparison of different low-temperature aging protocols: its effects on the mechanical behavior of Y-TZP ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 324-330.	3.1	45
17	Substrate masking ability of bilayer and monolithic ceramics used for complete crowns and the effect of association with an opaque resin-based luting agent. Journal of Prosthodontic Research, 2019, 63, 321-326.	2.8	43
18	Lithium disilicate glass-ceramic vs translucent zirconia polycrystals bonded to distinct substrates: Fatigue failure load, number of cycles for failure, survival rates, and stress distribution. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91, 122-130.	3.1	42

#	Article	IF	CITATIONS
19	Mechanical behavior of yttria-stabilized tetragonal zirconia polycrystalline ceramic after different zirconia surface treatments. Materials Science and Engineering C, 2017, 77, 828-835.	7.3	41
20	Fatigue strength of yttria-stabilized zirconia polycrystals: Effects of grinding, polishing, glazing, and heat treatment. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 512-520.	3.1	37
21	Fatigue failure load of an adhesively-cemented lithium disilicate glass-ceramic: Conventional ceramic etching vs etch & prime one-step primer. Dental Materials, 2018, 34, 1134-1143.	3.5	37
22	Mechanical properties and superficial characterization of a milled CAD-CAM glass fiber post. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 82, 187-192.	3.1	36
23	The effect of hydrofluoric acid concentration on the fatigue failure load of adhesively cemented feldspathic ceramic discs. Dental Materials, 2018, 34, 667-675.	3.5	36
24	Mechanical performance of Y-TZP monolithic ceramic after grinding and aging: Survival estimates and fatigue strength. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 87, 288-295.	3.1	36
25	Hydrofluoric acid concentrations: Effect on the cyclic load-to-failure of machined lithium disilicate restorations. Dental Materials, 2018, 34, e255-e263.	3.5	36
26	Effects of two grading techniques of zirconia material on the fatigue limit of full-contour 3-unit fixed dental prostheses. Dental Materials, 2017, 33, e155-e164.	3.5	35
27	Protocol registration improves reporting quality of systematic reviews in dentistry. BMC Medical Research Methodology, 2020, 20, 57.	3.1	34
28	Effect of grinding and heat treatment on the mechanical behavior of zirconia ceramic. Brazilian Oral Research, 2016, 30, .	1.4	30
29	Systematic reviews in dentistry: Current status, epidemiological and reporting characteristics. Journal of Dentistry, 2019, 82, 71-84.	4.1	30
30	One-step ceramic primer as surface conditioner: Effect on the load-bearing capacity under fatigue of bonded lithium disilicate ceramic simplified restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103686.	3.1	27
31	Comparison of endocrowns made of lithium disilicate glass-ceramic or polymer-infiltrated ceramic networks and direct composite resin restorations: fatigue performance and stress distribution. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 100, 103401.	3.1	26
32	External Marginal Gap Variation and Residual Fracture Resistance of Composite and Lithium-Silicate CAD/CAM Overlays after Cyclic Fatigue over Endodontically-Treated Molars. Polymers, 2021, 13, 3002.	4.5	25
33	How does hydrofluoric acid etching affect the cyclic load-to-failure of lithium disilicate restorations?. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 87, 306-311.	3.1	24
34	Microstructure, topography, surface roughness, fractal dimension, internal and marginal adaptation of pressed and milled lithium-disilicate monolithic restorations. Journal of Prosthodontic Research, 2020, 64, 12-19.	2.8	24
35	Accelerated loading frequency does not influence the fatigue behavior of polymer infiltrated ceramic network or lithium disilicate glass-ceramic restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103905.	3.1	24
36	Effect of Root Canal Irrigants on the Mechanical Properties of Endodontically Treated Teeth: A Scoping Review. Journal of Endodontics, 2020, 46, 596-604.e3.	3.1	24

#	Article	IF	CITATIONS
37	Grinding With Diamond Burs and Hydrothermal Aging of a Y-TZP Material: Effect on the Material Surface Characteristics and Bacterial Adhesion. Operative Dentistry, 2017, 42, 669-678.	1.2	23
38	Influence of finishing/polishing on the fatigue strength, surface topography, and roughness of an yttrium-stabilized tetragonal zirconia polycrystals subjected to grinding. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 93, 222-229.	3.1	23
39	Sequential usage of diamond bur for CAD/CAM milling: Effect on the roughness, topography and fatigue strength of lithium disilicate glass ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91, 326-334.	3.1	23
40	Effect of ceramic thickness, grinding, and aging on the mechanical behavior of a polycrystalline zirconia. Brazilian Oral Research, 2017, 31, e82.	1.4	22
41	CAD/CAM machining Vs pre-sintering in-lab fabrication techniques of Y-TZP ceramic specimens: Effects on their mechanical fatigue behavior. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 201-208.	3.1	21
42	Grinding, polishing and glazing of the occlusal surface do not affect the load-bearing capacity under fatigue and survival rates of bonded monolithic fully-stabilized zirconia simplified restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103, 103528.	3.1	20
43	Mechanical behavior of yttria-stabilized tetragonal zirconia polycrystal: Effects of different aging regimens. Brazilian Oral Research, 2017, 31, e94.	1.4	19
44	Polishing of Ground Y-TZP Ceramic is Mandatory for Improving the Mechanical Behavior. Brazilian Dental Journal, 2018, 29, 483-491.	1.1	19
45	Load-bearing capacity under fatigue and survival rates of adhesively cemented yttrium-stabilized zirconia polycrystal monolithic simplified restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 673-680.	3.1	19
46	Fatigue resistance of simplified CAD–CAM restorations: Foundation material and ceramic thickness effects on the fatigue behavior of partially- and fully-stabilized zirconia. Dental Materials, 2021, 37, 568-577.	3.5	19
47	Influence of Endodontic Treatment and Retreatment on the Fatigue Failure Load, Numbers of Cycles for Failure, and Survival Rates of Human Canine Teeth. Journal of Endodontics, 2017, 43, 2081-2087.	3.1	18
48	Effect of zirconia surface treatment, resin cement and aging on the load-bearing capacity under fatigue of thin simplified full-contour Y-TZP restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 97, 21-29.	3.1	18
49	Fatigue performance of distinct CAD/CAM dental ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103, 103540.	3.1	18
50	In-lab simulation of CAD/CAM milling of lithium disilicate glass-ceramic specimens: Effect on the fatigue behavior of the bonded ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104604.	3.1	18
51	Load-bearing capacity under fatigue and FEA analysis of simplified ceramic restorations supported by Peek or zirconia polycrystals as foundation substrate for implant purposes. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 104760.	3.1	18
52	A Multicenter Randomized Double-blind Controlled Clinical Trial of Fiber Post Cementation Strategies. Operative Dentistry, 2018, 43, 128-135.	1.2	17
53	Low-fusing porcelain glaze application does not damage the fatigue strength of Y-TZP. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 99, 198-205.	3.1	17
54	Newer vs. older CAD/CAM burs: Influence of bur experience on the fatigue behavior of adhesively cemented simplified lithium-disilicate glass-ceramic restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 95, 172-179.	3.1	17

#	Article	IF	CITATIONS
55	Do endodontic retreatment techniques influence the fracture strength of endodontically treated teeth? A systematic review and meta-analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 306-312.	3.1	17
56	Influence of shading technique on mechanical fatigue performance and optical properties of a 4Y-TZP ceramic for monolithic restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 102, 103457.	3.1	15
57	The mass production of systematic reviews about COVIDâ€19: An analysis of PROSPERO records. Journal of Evidence-Based Medicine, 2021, 14, 56-64.	1.8	15
58	Influence of the foundation substrate on the fatigue behavior of bonded glass, zirconia polycrystals, and polymer infiltrated ceramic simplified CAD-CAM restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 117, 104391.	3.1	15
59	Do resin cement viscosity and ceramic surface etching influence the fatigue performance of bonded lithium disilicate glass-ceramic crowns?. Dental Materials, 2022, 38, e59-e67.	3.5	15
60	Influence of remaining coronal thickness and height on biomechanical behavior of endodontically treated teeth: survival rates, load to fracture and finite element analysis. Journal of Applied Oral Science, 2018, 26, e20170313.	1.8	14
61	Restorative preferences and choices of dentists and students for restoring endodontically treated teeth: A systematic review of survey studies. Journal of Prosthetic Dentistry, 2021, 126, 489-489.e5.	2.8	14
62	Fatigue performance of adhesively luted glass or polycrystalline CAD-CAM monolithic crowns. Journal of Prosthetic Dentistry, 2021, 126, 119-127.	2.8	14
63	The use of solvents for guttaâ€percha dissolution/removal during endodontic retreatments: A scoping review. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 890-901.	3.4	14
64	Cyclic fatigue tests on non-anatomic specimens of dental ceramic materials: A scoping review. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 104985.	3.1	14
65	Longevity of metal-ceramic crowns cemented with self-adhesive resin cement: a prospective clinical study. Brazilian Oral Research, 2017, 31, e22.	1.4	13
66	Assessment of stress/strain in dental implants and abutments of alternative materials compared to conventional titanium alloy—3D non-linear finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23, 372-383.	1.6	13
67	Dry-bonding Etch-and-Rinse Strategy Improves Bond Longevity of a Universal Adhesive to Sound and Artificially-induced Caries-affected Primary Dentin. Journal of Adhesive Dentistry, 2016, 18, 475-482.	0.5	13
68	Fiber-matrix integrity, micromorphology and flexural strength of glass fiber posts: Evaluation of the impact of rotary instruments. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 48, 192-199.	3.1	12
69	Effect of zirconia polycrystal and stainless steel on the wear of resin composites, dentin and enamel. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91, 287-293.	3.1	12
70	Effect of grinding and aging on subcritical crack growth of a Y-TZP ceramic. Brazilian Oral Research, 2018, 32, e32.	1.4	11
71	Effect of Grinding and Multi-Stimuli Aging on the Fatigue Strength of a Y-TZP Ceramic. Brazilian Dental Journal, 2018, 29, 60-67.	1.1	11
72	Surface treatments of a glass-fiber reinforced composite: Effect on the adhesion to a composite resin. Journal of Prosthodontic Research, 2020, 64, 301-306.	2.8	10

#	Article	IF	CITATIONS
73	Could different direct restoration techniques affect interfacial gap and fracture resistance of endodontically treated anterior teeth?. Clinical Oral Investigations, 2021, 25, 5967-5975.	3.0	10
74	Effect of different surface treatments on optical, colorimetric, and surface characteristics of a lithium disilicate glass–ceramic. Journal of Esthetic and Restorative Dentistry, 2021, 33, 1017-1028.	3.8	10
75	Restorative Possibilities Using Zirconia Ceramics for Single Crowns. Brazilian Dental Journal, 2019, 30, 446-452.	1.1	10
76	Fatigue performance of fully-stabilized zirconia polycrystals monolithic restorations: The effects of surface treatments at the bonding surface. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103962.	3.1	9
77	Mechanical Fatigue Analysis of PEEK as Alternative to Zirconia for Definitive Hybrid Abutments Supporting All-Ceramic Crowns. International Journal of Oral and Maxillofacial Implants, 2020, 35, 1209-1217.	1.4	9
78	Influence of Root Canal Preparation on Formation of Dentinal Microcracks: A Systematic Review. Brazilian Dental Journal, 2020, 31, 201-220.	1.1	9
79	Aging Methods—An Evaluation of Their Influence on Bond Strength. European Journal of Dentistry, 2021, 15, 448-453.	1.7	8
80	Surface treatments and its effects on the fatigue behavior of a 5% mol yttria partially stabilized zirconia material. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 120, 104543.	3.1	8
81	Fatigue Failure Load of Resin-bonded Simplified Lithium Disilicate Glass-Ceramic Restorations: Effect of Ceramic Conditioning Methods. Journal of Adhesive Dentistry, 2019, 21, 373-381.	0.5	8
82	Fatigue limit of monolithic Y-TZP three-unit-fixed dental prostheses: Effect of grinding at the gingival zone of the connector. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 72, 159-162.	3.1	7
83	Surface topography and bond strength of CAD–CAM milled zirconia ceramic luted onto human dentin: effect of surface treatments before and after sintering. Applied Adhesion Science, 2018, 6, .	1.5	7
84	Effect of Surface Coating on Bond Strength between Etched Feldspar Ceramic and Resin-Based Luting Agents. BioMed Research International, 2018, 2018, 1-6.	1.9	7
85	Air-abrasion using new silica-alumina powders containing different silica concentrations: Effect on the microstructural characteristics and fatigue behavior of a Y-TZP ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 98, 11-19.	3.1	7
86	Bond strength and quality of bond interface of multifilament fiberglass posts luted onto flat-oval root canals without additional dentin wear after biomechanical preparation. Journal of Prosthetic Dentistry, 2020, 124, 738.e1-738.e8.	2.8	7
87	High load frequency at 20Hz: Its effects on the fatigue behavior of a leucite-reinforced glass-ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 107, 103769.	3.1	7
88	Influence of surface treatment of resin composite substrate on the load-bearing capacity under fatigue of lithium disilicate monolithic simplified restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 124, 104792.	3.1	7
89	Physical properties of conventional and monolithic yttria-zirconia materials after low-temperature degradation. Ceramics International, 2019, 45, 21038-21043.	4.8	5
90	Fatigue Failure Load of a Bonded Simplified Monolithic Feldspathic Ceramic: Influence of Hydrofluoric Acid Etching and Thermocycling. Operative Dentistry, 2020, 45, E21-E31.	1.2	5

#	Article	IF	CITATIONS
91	Layering of discolored substrates with high-value opaque composites for CAD-CAM monolithic ceramics. Journal of Prosthetic Dentistry, 2021, 126, 128.e1-128.e6.	2.8	5
92	Fatigue survival of endodontically treated teeth restored with different fiber-reinforced composite resin post strategies versus universal 2-piece fiber post system: An inÂvitro study. Journal of Prosthetic Dentistry, 2023, 129, 456-463.	2.8	5
93	Sintering mode of a translucent <scp>Yâ€₹ZP</scp> : Effects on its biaxial flexure fatigue strength, surface morphology and translucency. Journal of Esthetic and Restorative Dentistry, 2022, 34, 1197-1205.	3.8	5
94	Effect of pigmentation techniques on the fatigue mechanical behavior of a translucent zirconia for monolithic restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 134, 105362.	3.1	5
95	Fatigue Failure Load of Restored Premolars: Effect of Etching the Intaglio Surface of Ceramic Inlays With Hydrofluoric Acid at Different Concentrations. Operative Dentistry, 2018, 43, E81-E91.	1.2	4
96	Influence of zirconia surface treatments of a bilayer restorative assembly on the fatigue performance. Journal of Prosthodontic Research, 2021, 65, 162-170.	2.8	4
97	Alumina particle air-abrasion and aging effects: Fatigue behavior of CAD/CAM resin composite crowns and flexural strength evaluations. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104592.	3.1	4
98	Influence of different contaminants and cleansing agents on bond strength and in situ degree of conversion of composite-adhesive interface. International Journal of Adhesion and Adhesives, 2021, 110, 102932.	2.9	4
99	Is the application of a silane-based coupling agent necessary to stabilize the fatigue performance of bonded simplified lithium disilicate restorations?. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 104989.	3.1	4
100	Obtaining optimal esthetics with veneered zirconia and lithium disilicate frameworks on substrates of different colors. Journal of Esthetic and Restorative Dentistry, 2020, 32, 540-544.	3.8	3
101	Grinding and polishing of the inner surface of monolithic simplified restorations made of zirconia polycrystals and lithium disilicate glass-ceramic: Effects on the load-bearing capacity under fatigue of the bonded restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 124, 104833.	3.1	3
102	Silicone Disclosing Material used after Ceramic Surface Treatment Reduces Bond Strength. Journal of Adhesive Dentistry, 2016, 18, 545-554.	0.5	3
103	Effect of two Resin Cements and two Fiber Post Surface Treatments on Push-out Bond Strength between Fiber Post and Root Dentin. Journal of Contemporary Dental Practice, 2015, 16, 7-12.	0.5	3
104	The influence of roughness on the resistance to impact of different CAD/CAM dental ceramics. Brazilian Dental Journal, 2021, 32, 54-65.	1.1	3
105	Stable Resin Bonding to Y-TZP Ceramic with Air Abrasion by Alumina Particles Containing 7% Silica. Journal of Adhesive Dentistry, 2020, 22, 149-159.	0.5	3
106	Fatigue behavior and colorimetric differences of a porcelain-veneered zirconia: effect of quantity and position of specimens during firing. Journal of Prosthodontic Research, 2021, 65, 202-207.	2.8	2
107	Factors influencing the clinical performance of the restoration of endodontically treated teeth: An assessment of systematic reviews of clinical studies. Journal of Prosthetic Dentistry, 2022, , .	2.8	2
108	Pre-sintering pigmentation techniques do not affect the fatigue behavior of adhesively luted 4YSZ restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2022, , 105270.	3.1	2

#	Article	IF	CITATIONS
109	Acceptance of systematic reviews as Master/PhD theses in Brazilian graduate programs in dentistry. Journal of Evidence-Based Medicine, 2020, 13, 125-129.	1.8	1
110	Influência do método de inserção do cimento resinoso na resistência adesiva de pinos de fibra de vidro Journal of Oral Investigations, 2017, 6, 62.	0.3	1
111	Collagen vs expanded polytetrafluorethylene membranes during guided-bone regeneration simultaneous with implant placement – a systematic review. Journal of Oral Investigations, 2019, 8, 59.	0.3	1
112	Novel cinnamon-laden nanofibers as a potential antifungal coating for poly(methyl methacrylate) denture base materials. Clinical Oral Investigations, 2022, 26, 3697-3706.	3.0	1
113	Different Etching Times of a One-step Ceramic Primer: Effect on the Resin Bond Strength Durability to a CAD/CAM Lithium-Disilicate Glass-Ceramic. Journal of Adhesive Dentistry, 2021, 23, 133-143.	0.5	1
114	Adhesion to a new CAD/CAM resin composite: Effects of the machining roughness simulation, surface treatments, and long-term aging. International Journal of Adhesion and Adhesives, 2022, 118, 103194.	2.9	1
115	How are meta-analyses being conducted and reported in dentistry?. Brazilian Journal of Oral Sciences, 0, 20, e211701.	0.1	Ο
116	Fatigue failure load of prefabricated fiber reinforced post: The influence of the post diameter and fatigue test method. International Journal of Adhesion and Adhesives, 2021, 108, 102864.	2.9	0
117	Moldagem em prótese fixa: confecção do casquete de moldagem. Journal of Oral Investigations, 2017, 6, 50.	0.3	Ο
118	Effect of several repair techniques on the bond strength between composite resin and degraded Y-TZP ceramic. Brazilian Dental Science, 2018, 21, 377.	0.4	0
119	Effect of root canal irrigants on push-out bond strength of endodontic sealers: a systematic review. Journal of Adhesion Science and Technology, 2021, 35, 1701-1722.	2.6	Ο
120	Novas perspectivas para reabilitação de dentes tratados endodonticamente. Journal of Oral Investigations, 2020, 9, 110.	0.3	0
121	New Materials for CAD/CAM Systems: Resin-Based Composites, Polymer-Infiltrated Ceramic Network, Zirconia-Reinforced Lithium Silicate, and High Translucent Zirconia. , 2020, , 211-233.		Ο
122	Influence of testing environment on static fatigue behavior of a glass and a polycrystalline ceramic. Brazilian Dental Journal, 2021, 32, 56-64.	1.1	0
123	Possibilidades restaurativas usando cerâmica de zircônia para coroas unitárias Brazilian Journal of Implantology and Health Sciences, 2020, 2, 45-58.	0.1	0
124	Effect of different cleaning methods after surface treatment of dental ceramics on the surface characteristics and adhesion to resin-based luting agents. Journal of Adhesion Science and Technology, 0, , 1-12.	2.6	0