Irving L Weissman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6739320/publications.pdf

Version: 2024-02-01

1614 932 62,626 302 105 citations h-index papers

g-index 313 313 313 60322 docs citations times ranked citing authors all docs

240

#	Article	IF	CITATIONS
1	Stem cells, cancer, and cancer stem cells. Nature, 2001, 414, 105-111.	27.8	8,665
2	Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Medicine, 2000, 6, 1229-1234.	30.7	2,255
3	A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature, 2000, 404, 193-197.	27.8	2,194
4	Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 2004, 428, 668-673.	27.8	1,639
5	PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature, 2017, 545, 495-499.	27.8	1,489
6	A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature, 1983, 304, 30-34.	27.8	1,457
7	Little Evidence for Developmental Plasticity of Adult Hematopoietic Stem Cells. Science, 2002, 297, 2256-2259.	12.6	1,423
8	New tools for studying microglia in the mouse and human CNS. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1738-46.	7.1	1,400
9	CD47 Is an Adverse Prognostic Factor and Therapeutic Antibody Target on Human Acute Myeloid Leukemia Stem Cells. Cell, 2009, 138, 286-299.	28.9	1,371
10	CD47 Is Upregulated on Circulating Hematopoietic Stem Cells and Leukemia Cells to Avoid Phagocytosis. Cell, 2009, 138, 271-285.	28.9	1,282
11	The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6662-6667.	7.1	1,255
12	The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity, 1994, 1, 661-673.	14.3	976
13	A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature, 2020, 587, 619-625.	27.8	963
14	Anti-CD47 Antibody Synergizes with Rituximab to Promote Phagocytosis and Eradicate Non-Hodgkin Lymphoma. Cell, 2010, 142, 699-713.	28.9	894
15	CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin's Lymphoma. New England Journal of Medicine, 2018, 379, 1711-1721.	27.0	796
16	The aging of hematopoietic stem cells. Nature Medicine, 1996, 2, 1011-1016.	30.7	790
17	CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature, 2019, 572, 392-396.	27.8	744
18	The Biology of Hematopoietic Stem Cells. Annual Review of Cell and Developmental Biology, 1995, 11, 35-71.	9.4	687

#	Article	IF	Citations
19	A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature, 2020, 583, 590-595.	27.8	683
20	Hematopoietic stem cell: selfâ€renewal versus differentiation. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 640-653.	6.6	666
21	Clonal Evolution of Preleukemic Hematopoietic Stem Cells Precedes Human Acute Myeloid Leukemia. Science Translational Medicine, 2012, 4, 149ra118.	12.4	630
22	Calreticulin Is the Dominant Pro-Phagocytic Signal on Multiple Human Cancers and Is Counterbalanced by CD47. Science Translational Medicine, 2010, 2, 63ra94.	12.4	591
23	Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14016-14021.	7.1	584
24	Identification and Specification of the Mouse Skeletal Stem Cell. Cell, 2015, 160, 285-298.	28.9	571
25	Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nature Medicine, 2013, 19, 998-1004.	30.7	559
26	Phagocytosis checkpoints as new targets for cancer immunotherapy. Nature Reviews Cancer, 2019, 19, 568-586.	28.4	557
27	Thymus cell migration: Quantitative aspects of cellular traffic from the thymus to the periphery in mice. European Journal of Immunology, 1980, 10, 210-218.	2.9	551
28	Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science, 2015, 348, aaa2151.	12.6	520
29	Anti-CD47 antibody–mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11103-11108.	7.1	518
30	B220: a B cell-specific member of the T200 glycoprotein family. Nature, 1981, 289, 681-683.	27.8	508
31	The CD47–SIRPα pathway in cancer immune evasion and potential therapeutic implications. Current Opinion in Immunology, 2012, 24, 225-232.	5.5	507
32	Identification of a Hierarchy of Multipotent Hematopoietic Progenitors in Human Cord Blood. Cell Stem Cell, 2007, 1, 635-645.	11.1	485
33	Coronary arteries form by developmental reprogramming of venous cells. Nature, 2010, 464, 549-553.	27.8	476
34	CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature, 2016, 536, 86-90.	27.8	443
35	Identification of the Human Skeletal Stem Cell. Cell, 2018, 175, 43-56.e21.	28.9	425
36	Engineered SIRPα Variants as Immunotherapeutic Adjuvants to Anticancer Antibodies. Science, 2013, 341, 88-91.	12.6	401

#	Article	IF	Citations
37	Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature, 2009, 457, 490-494.	27.8	383
38	First-in-Human, First-in-Class Phase I Trial of the Anti-CD47 Antibody Hu5F9-G4 in Patients With Advanced Cancers. Journal of Clinical Oncology, 2019, 37, 946-953.	1.6	377
39	Quiescent Hematopoietic Stem Cells Accumulate DNA Damage during Aging that Is Repaired upon Entry into Cell Cycle. Cell Stem Cell, 2014, 15, 37-50.	11.1	373
40	Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer Therapeutic Potential. PLoS ONE, 2015, 10, e0137345.	2.5	373
41	Efficient Transplantation via Antibody-Based Clearance of Hematopoietic Stem Cell Niches. Science, 2007, 318, 1296-1299.	12.6	370
42	Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nature Immunology, 2018, 19, 76-84.	14.5	370
43	Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types. Cell, 2016, 166, 451-467.	28.9	367
44	Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature, 2019, 571, 205-210.	27.8	351
45	Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature, 2011, 476, 409-413.	27.8	350
46	Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature, 2000, 407, 383-386.	27.8	348
47	"Fluorescent Timer": Protein That Changes Color with Time. Science, 2000, 290, 1585-1588.	12.6	347
48	Organ specificity of lymphocyte migration: mediation by highly selective lymphocyte interaction with organ-specific determinants on high endothelial venules. European Journal of Immunology, 1980, 10, 556-561.	2.9	344
49	Improving immune–vascular crosstalk for cancer immunotherapy. Nature Reviews Immunology, 2018, 18, 195-203.	22.7	340
50	CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. Journal of Clinical Investigation, 2016, 126, 2610-2620.	8.2	336
51	Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal. Nature, 2017, 545, 238-242.	27.8	327
52	Efficient Endoderm Induction from Human Pluripotent Stem Cells by Logically Directing Signals Controlling Lineage Bifurcations. Cell Stem Cell, 2014, 14, 237-252.	11.1	325
53	Therapeutic Antibody Targeting of CD47 Eliminates Human Acute Lymphoblastic Leukemia. Cancer Research, 2011, 71, 1374-1384.	0.9	318
54	Disrupting the CD47-SIRPÎ \pm anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Science Translational Medicine, 2017, 9, .	12.4	306

#	Article	IF	Citations
55	An immunoglobulin heavy-chain gene is formed by at least two recombinational events. Nature, 1980, 283, 733-739.	27.8	305
56	The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage. British Journal of Haematology, 2000, 109, 280-287.	2.5	303
57	The Role of Apoptosis in the Regulation of Hematopoietic Stem Cells. Journal of Experimental Medicine, 2000, 191, 253-264.	8.5	300
58	Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6506-14.	7.1	299
59	The murine T-cell receptor uses a limited repertoire of expressed $\hat{V^2}$ gene segments. Nature, 1985, 316, 517-523.	27.8	294
60	THYMUS CELL MIGRATION. Journal of Experimental Medicine, 1967, 126, 291-304.	8.5	279
61	Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature, 2016, 530, 223-227.	27.8	275
62	Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature, 2021, 590, 122-128.	27.8	264
63	Phenotypic and Functional Changes Induced at the Clonal Level in Hematopoietic Stem Cells After 5-Fluorouracil Treatment. Blood, 1997, 89, 3596-3606.	1.4	259
64	Breaking Down the Barriers to Precision Cancer Nanomedicine. Trends in Biotechnology, 2017, 35, 159-171.	9.3	254
65	Gene Expression Commons: An Open Platform for Absolute Gene Expression Profiling. PLoS ONE, 2012, 7, e40321.	2.5	227
66	Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3011-3016.	7.1	225
67	Macrophages are critical effectors of antibody therapies for cancer. MAbs, 2015, 7, 303-310.	5.2	223
68	Anti-SIRPÎ \pm antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10578-E10585.	7.1	223
69	Anti-CD47 Treatment Stimulates Phagocytosis of Glioblastoma by M1 and M2 Polarized Macrophages and Promotes M1 Polarized Macrophages In Vivo. PLoS ONE, 2016, 11, e0153550.	2.5	221
70	Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8850-8855.	7.1	219
71	Macrophages as mediators of tumor immunosurveillance. Trends in Immunology, 2010, 31, 212-219.	6.8	215
72	Macrophages eat cancer cells using their own calreticulin as a guide: Roles of TLR and Btk. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2145-2150.	7.1	210

#	Article	IF	CITATIONS
73	Clonal Analysis of Mouse Development Reveals a Polyclonal Origin for Yolk Sac Blood Islands. Developmental Cell, 2006, 11, 519-533.	7.0	209
74	Programmed cell removal: a new obstacle in the road to developing cancer. Nature Reviews Cancer, 2012, 12, 58-67.	28.4	208
75	Epigenetic and in vivo comparison of diverse MSC sources reveals an endochondral signature for human hematopoietic niche formation. Blood, 2015, 125, 249-260.	1.4	201
76	InÂVivo Clonal Analysis Reveals Lineage-Restricted Progenitor Characteristics in Mammalian Kidney Development, Maintenance, and Regeneration. Cell Reports, 2014, 7, 1270-1283.	6.4	199
77	Articular cartilage regeneration by activated skeletal stem cells. Nature Medicine, 2020, 26, 1583-1592.	30.7	194
78	Single-cell analysis of early progenitor cells that build coronary arteries. Nature, 2018, 559, 356-362.	27.8	190
79	Tumor-Associated Macrophages Enhance Tumor Hypoxia and Aerobic Glycolysis. Cancer Research, 2019, 79, 795-806.	0.9	188
80	Therapeutic Targeting of the Macrophage Immune Checkpoint CD47 in Myeloid Malignancies. Frontiers in Oncology, 2019, 9, 1380.	2.8	187
81	Microglia are effector cells of CD47-SIRPα antiphagocytic axis disruption against glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 997-1006.	7.1	183
82	Identification of the earliest natural killer cell–committed progenitor in murine bone marrow. Blood, 2011, 118, 5439-5447.	1.4	178
83	The Role of Efferocytosis in Atherosclerosis. Circulation, 2017, 135, 476-489.	1.6	173
84	Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nature Nanotechnology, 2020, 15, 154-161.	31.5	173
85	A CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer. Nature Communications, 2017, 8, 14802.	12.8	168
86	Molecular Pathways: Activating T Cells after Cancer Cell Phagocytosis from Blockade of CD47 "Don't Eat Me―Signals. Clinical Cancer Research, 2015, 21, 3597-3601.	7.0	167
87	Pericytes are progenitors for coronary artery smooth muscle. ELife, 2015, 4, .	6.0	162
88	Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature. Nature Cell Biology, 2012, 14, 1251-1260.	10.3	158
89	Unifying mechanism for different fibrotic diseases. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4757-4762.	7.1	155
90	Transplantation of highly purified CD34+Thy-1+ hematopoietic stem cells in patients with metastatic breast cancer. Biology of Blood and Marrow Transplantation, 2000, 6, 262-271.	2.0	152

#	Article	IF	Citations
91	Systemic and mucosal IgA responses are variably induced in response to SARS-CoV-2 mRNA vaccination and are associated with protection against subsequent infection. Mucosal Immunology, 2022, 15, 799-808.	6.0	152
92	Clonal Tracking of Rhesus Macaque Hematopoiesis Highlights a Distinct Lineage Origin for Natural Killer Cells. Cell Stem Cell, 2014, 14, 486-499.	11.1	149
93	A Roadmap for Human Liver Differentiation from Pluripotent Stem Cells. Cell Reports, 2018, 22, 2190-2205.	6.4	145
94	Aged skeletal stem cells generate an inflammatory degenerative niche. Nature, 2021, 597, 256-262.	27.8	143
95	Hematopoietic cells maintain hematopoietic fates upon entering the brain. Journal of Experimental Medicine, 2005, 201, 1579-1589.	8.5	141
96	Hematopoietic stem cell transplantation in immunocompetent hosts without radiation or chemotherapy. Science Translational Medicine, 2016, 8, 351ra105.	12.4	140
97	Regenerating the field of cardiovascular cell therapy. Nature Biotechnology, 2019, 37, 232-237.	17.5	140
98	Stem Cells â€" Scientific, Medical, and Political Issues. New England Journal of Medicine, 2002, 346, 1576-1579.	27.0	138
99	Tuning Cytokine Receptor Signaling by Re-orienting Dimer Geometry with Surrogate Ligands. Cell, 2015, 160, 1196-1208.	28.9	138
100	Stem Cell Research. JAMA - Journal of the American Medical Association, 2005, 294, 1359.	7.4	136
101	Identification of phagocytosis regulators using magnetic genome-wide CRISPR screens. Nature Genetics, 2018, 50, 1716-1727.	21.4	135
102	Bone marrow cells give rise to distinct cell clones within the thymus. Nature, 1984, 309, 629-631.	27.8	134
103	Purified Allogeneic Hematopoietic Stem Cell Transplantation Blocks Diabetes Pathogenesis in NOD Mice. Diabetes, 2003, 52, 59-68.	0.6	129
104	Endoscopic molecular imaging of human bladder cancer using a CD47 antibody. Science Translational Medicine, 2014, 6, 260ra148.	12.4	124
105	Role of interleukin-7 in T-cell development from hematopoietic stem cells. Immunological Reviews, 1998, 165, 13-28.	6.0	121
106	Immune Priming of the Tumor Microenvironment by Radiation. Trends in Cancer, 2016, 2, 638-645.	7.4	120
107	Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12643-12648.	7.1	116
108	Programmed cell removal by calreticulin in tissue homeostasis and cancer. Nature Communications, 2018, 9, 3194.	12.8	114

#	Article	IF	Citations
109	Allorecognition Histocompatibility in a Protochordate Species: Is the Relationship to MHC Somatic or Structural?. Immunological Reviews, 1990, 113, 227-241.	6.0	107
110	Bcl-2 Cooperates with Promyelocytic Leukemia Retinoic Acid Receptor α Chimeric Protein (Pmlrarα) to Block Neutrophil Differentiation and Initiate Acute Leukemia. Journal of Experimental Medicine, 2001, 193, 531-544.	8.5	105
111	Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nature Medicine, 2022, 28, 333-344.	30.7	105
112	Practical Immuno-PET Radiotracer Design Considerations for Human Immune Checkpoint Imaging. Journal of Nuclear Medicine, 2017, 58, 538-546.	5.0	102
113	Characterization of a Population of Cells in the Bone Marrow that Phenotypically Mimics Hematopoietic Stem Cells: Resting Stem Cells or Mystery Population?. Stem Cells, 1998, 16, 38-48.	3.2	101
114	Integrin Molecules Involved in Lymphocyte Homing to Peyer's Patches. Immunological Reviews, 1989, 108, 45-61.	6.0	100
115	Inter-cellular CRISPR screens reveal regulators of cancer cell phagocytosis. Nature, 2021, 597, 549-554.	27.8	95
116	Identification and characterization of an injury-induced skeletal progenitor. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9920-9925.	7.1	93
117	Inhibition of Apoptosis Overcomes Stage-Related Compatibility Barriers to Chimera Formation in Mouse Embryos. Cell Stem Cell, 2016, 19, 587-592.	11.1	92
118	Where Hematopoietic Stem Cells Live: The Bone Marrow Niche. Antioxidants and Redox Signaling, 2018, 29, 191-204.	5.4	92
119	Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2698-2703.	7.1	90
120	Age-associated changes in human hematopoietic stem cells. Seminars in Hematology, 2017, 54, 39-42.	3.4	89
121	A morphological and immunohistochemical study of programmed cell death in Botryllus schlosseri (Tunicata, Ascidiacea). Cell and Tissue Research, 1993, 272, 115-127.	2.9	86
122	Reactivation of the pluripotency program precedes formation of the cranial neural crest. Science, 2021, 371, .	12.6	84
123	CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4725-4730.	7.1	83
124	Clonally expanding smooth muscle cells promote atherosclerosis by escaping efferocytosis and activating the complement cascade. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15818-15826.	7.1	83
125	Granzyme A and perforin as markers for rejection in cardiac transplantation. European Journal of Immunology, 1991, 21, 687-692.	2.9	82
126	Murine leukaemogenesis: monoclonal antibodies to T-cell determinants arrest T-lymphoma cell proliferation. Nature, 1980, 285, 259-261.	27.8	80

#	Article	IF	Citations
127	Pharmacological rescue of diabetic skeletal stem cell niches. Science Translational Medicine, 2017, 9, .	12.4	80
128	Global analysis of shared TÂcell specificities in human non-small cell lung cancer enables HLA inference and antigen discovery. Immunity, 2021, 54, 586-602.e8.	14.3	80
129	"Velcro―Engineering of High Affinity CD47 Ectodomain as Signal Regulatory Protein α (SIRPα) Antagonists That Enhance Antibody-dependent Cellular Phagocytosis. Journal of Biological Chemistry, 2015, 290, 12650-12663.	3.4	75
130	Prospective isolation of human erythroid lineage-committed progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9638-9643.	7.1	74
131	De novo mutations in mitochondrial DNA of iPSCs produce immunogenic neoepitopes in mice and humans. Nature Biotechnology, 2019, 37, 1137-1144.	17.5	74
132	Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4464-4469.	7.1	70
133	Decoupling the Functional Pleiotropy of Stem Cell Factor by Tuning c-Kit Signaling. Cell, 2017, 168, 1041-1052.e18.	28.9	70
134	Surgical adhesions in mice are derived from mesothelial cells and can be targeted by antibodies against mesothelial markers. Science Translational Medicine, 2018, 10, .	12.4	70
135	CD47-Targeted Near-Infrared Photoimmunotherapy for Human Bladder Cancer. Clinical Cancer Research, 2019, 25, 3561-3571.	7.0	70
136	Clonal-level lineage commitment pathways of hematopoietic stem cells in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1447-1456.	7.1	68
137	Computational correction of index switching in multiplexed sequencing libraries. Nature Methods, 2018, 15, 305-307.	19.0	67
138	Combining CD47 blockade with trastuzumab eliminates HER2-positive breast cancer cells and overcomes trastuzumab tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	67
139	In vitro development of B cells and macrophages from early mouse fetal thymocytes. European Journal of Immunology, 1994, 24, 781-784.	2.9	65
140	Allorecognition in colonial tunicates: protection against predatory cell lineages?. Immunological Reviews, 1999, 167, 69-79.	6.0	64
141	Lyt markers on thymus cell migrants. Nature, 1978, 276, 79-80.	27.8	62
142	TOLERANCE OF ALLOGENEIC HEART GRAFTS IN MICE SIMULTANEOUSLY RECONSTITUTED WITH PURIFIED ALLOGENEIC HEMATOPOIETIC STEM CELLS1. Transplantation, 1998, 65, 295-304.	1.0	62
143	Stem cells are units of natural selection for tissue formation, for germline development, and in cancer development. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8922-8928.	7.1	60
144	Complex mammalian-like haematopoietic system found in a colonial chordate. Nature, 2018, 564, 425-429.	27.8	60

#	Article	IF	CITATIONS
145	Isolation and functional assessment of mouse skeletal stem cell lineage. Nature Protocols, 2018, 13, 1294-1309.	12.0	60
146	Learning from Host-Defense Peptides: Cationic, Amphipathic Peptoids with Potent Anticancer Activity. PLoS ONE, 2014, 9, e90397.	2.5	60
147	Myeloid Cell Origins, Differentiation, and Clinical Implications. Microbiology Spectrum, 2016, 4, .	3.0	59
148	The road ended up at stem cells. Immunological Reviews, 2002, 185, 159-174.	6.0	58
149	LYVE1 Marks the Divergence of Yolk Sac Definitive Hemogenic Endothelium from the Primitive Erythroid Lineage. Cell Reports, 2016, 17, 2286-2298.	6.4	57
150	Antibody Therapy Targeting CD47 and CD271 Effectively Suppresses Melanoma Metastasis in Patient-Derived Xenografts. Cell Reports, 2016, 16, 1701-1716.	6.4	56
151	Dendritic Cell Development from Common Myeloid Progenitors. Annals of the New York Academy of Sciences, 2001, 938, 167-174.	3.8	55
152	Identification of Multipotent Progenitors that Emerge Prior to Hematopoietic Stem Cells in Embryonic Development. Stem Cell Reports, 2014, 2, 457-472.	4.8	55
153	Delivery of monocyte lineage cells in a biomimetic scaffold enhances tissue repair. JCI Insight, 2017, 2, .	5.0	55
154	An Alternate Pathway for T Cell Development Supported by the Bone Marrow Microenvironment: Recapitulation of Thymic Maturation. Journal of Experimental Medicine, 1998, 187, 1813-1823.	8.5	53
155	SCNT-Derived ESCs with Mismatched Mitochondria Trigger an Immune Response in Allogeneic Hosts. Cell Stem Cell, 2015, 16, 33-38.	11.1	52
156	Combination Treatment with 5F9 and Azacitidine Enhances Phagocytic Elimination of Acute Myeloid Leukemia. Blood, 2018, 132, 2729-2729.	1.4	52
157	Homing receptor-bearing thymocytes, an immunocompetent cortical subpopulation. Nature, 1985, 313, 233-235.	27.8	51
158	Mapping the Genome of a Model Protochordate. I. A Low Resolution Genetic Map Encompassing the Fusion/Histocompatibility (Fu/HC) Locus of Botryllus schlosseri. Genetics, 1998, 149, 277-287.	2.9	50
159	Discriminating cellular heterogeneity using microwell-based RNA cytometry. Nature Communications, 2014, 5, 3451.	12.8	49
160	Surgical debulking promotes recruitment of macrophages and triggers glioblastoma phagocytosis in combination with CD47 blocking immunotherapy. Oncotarget, 2017, 8, 12145-12157.	1.8	48
161	An atlas of transcriptional, chromatin accessibility, and surface marker changes in human mesoderm development. Scientific Data, 2016, 3, 160109.	5.3	47
162	Evidence of continuous evolutionary change in structures mediating adherence of lymphocytes to specialised venules. Nature, 1979, 280, 496-498.	27.8	46

#	Article	IF	Citations
163	Localization of lymphocyte subpopulations in peripheral lymphoid organs: Directed lymphocyte migration and segregation into specific microenvironments. American Journal of Anatomy, 1984, 170, 391-405.	1.0	46
164	Expression of granzyme a in salivary gland biopsies from patients with primary sj \tilde{A} ¶gren's syndrome. Arthritis and Rheumatism, 1994, 37, 1046-1054.	6.7	46
165	Long-Term Outcome of Patients with Metastatic Breast Cancer Treated with High-Dose Chemotherapy and Transplantation of Purified Autologous Hematopoietic Stem Cells. Biology of Blood and Marrow Transplantation, 2012, 18, 125-133.	2.0	46
166	Eradication of Canine Diffuse Large B-Cell Lymphoma in a Murine Xenograft Model with CD47 Blockade and Anti-CD20. Cancer Immunology Research, 2016, 4, 1072-1087.	3.4	46
167	Antibody Conditioning Enables MHC-Mismatched Hematopoietic Stem Cell Transplants and Organ Graft Tolerance. Cell Stem Cell, 2019, 25, 185-192.e3.	11.1	46
168	A functional subset of CD8+ T cells during chronic exhaustion is defined by SIRPα expression. Nature Communications, 2019, 10, 794.	12.8	46
169	In utero depletion of fetal hematopoietic stem cells improves engraftment after neonatal transplantation in mice. Blood, 2014, 124, 973-980.	1.4	44
170	Hypoxia-inducible factor- \hat{l}_{\pm} regulates microglial functions affecting neuronal survival in the acute phase of ischemic stroke in mice. Oncotarget, 2017, 8, 111508-111521.	1.8	43
171	Hematopoietic stem cell-independent hematopoiesis and the origins of innate-like B lymphocytes. Development (Cambridge), 2019, 146, .	2.5	43
172	Adult stem cells and regenerative medicineâ€"a symposium report. Annals of the New York Academy of Sciences, 2020, 1462, 27-36.	3.8	43
173	V–J joining of immunoglobulin κ genes only occurs on one homologous chromosome. Nature, 1980, 284, 179-181.	27.8	42
174	<i>Botryllus schlosseri</i> , an emerging model for the study of aging, stem cells, and mechanisms of regeneration. Invertebrate Reproduction and Development, 2015, 59, 33-38.	0.8	42
175	Effects of Ultra-high doserate FLASH Irradiation on the Tumor Microenvironment in Lewis Lung Carcinoma: Role of Myosin Light Chain. International Journal of Radiation Oncology Biology Physics, 2021, 109, 1440-1453.	0.8	42
176	Targeting macrophage checkpoint inhibitor SIRPα for anticancer therapy. JCI Insight, 2020, 5, .	5.0	40
177	Separation and labeling of specific subpopulations ofBotryllus blood cells. The Journal of Experimental Zoology, 1984, 229, 401-411.	1.4	39
178	Dysregulated integrin $\hat{l}\pm V\hat{l}^23$ and CD47 signaling promotes joint inflammation, cartilage breakdown, and progression of osteoarthritis. JCI Insight, 2019, 4, .	5.0	39
179	Distinct skeletal stem cell types orchestrate long bone skeletogenesis. ELife, 2021, 10, .	6.0	38
180	Normal and Neoplastic Stem Cells. Novartis Foundation Symposium, 2008, , 35-54.	1.1	37

#	Article	lF	CITATIONS
181	Antigen-induced changes in B cell subsets in lymph nodes: analysis by dual fluorescence flow cytofluorometry. European Journal of Immunology, 1986, 16, 829-834.	2.9	36
182	Clonal reversal of ageing-associated stem cell lineage bias via a pluripotent intermediate. Nature Communications, 2017, 8, 14533.	12.8	36
183	Notch1 regulates the initiation of metastasis and self-renewal of Group 3 medulloblastoma. Nature Communications, 2018, 9, 4121.	12.8	36
184	CD47–SIRPα-targeted therapeutics: status and prospects. Immuno-Oncology Technology, 2022, 13, 100070.	0.3	36
185	Sleep disruption impairs haematopoietic stem cell transplantation in mice. Nature Communications, 2015, 6, 8516.	12.8	34
186	Identification of mouse cochlear progenitors that develop hair and supporting cells in the organ of Corti. Nature Communications, 2017, 8, 15046.	12.8	34
187	Mouse hematopoietic stem cells and the interaction of <i>câ€kir</i> receptor and steel factor. International Journal of Cell Cloning, 1991, 9, 451-460.	1.6	32
188	Training the next generation of biomedical investigators in glycosciences. Journal of Clinical Investigation, 2016, 126, 405-408.	8.2	32
189	Immunotherapeutic Blockade of CD47 Inhibitory Signaling Enhances Innate and Adaptive Immune Responses to Viral Infection. Cell Reports, 2020, 31, 107494.	6.4	31
190	Stem Cell Therapies Could Change Medicine… If They Get the Chance. Cell Stem Cell, 2012, 10, 663-665.	11.1	30
191	Irradiation or temozolomide chemotherapy enhances anti-CD47 treatment of glioblastoma. Innate Immunity, 2020, 26, 130-137.	2.4	29
192	Upregulation of CD47 Is a Host Checkpoint Response to Pathogen Recognition. MBio, 2020, 11, .	4.1	29
193	Hypoxia-inducible factor-1 (HIF-1) activation in myeloid cells accelerates DSS-induced colitis progression in mice. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	28
194	The GABA receptor GABRR1 is expressed on and functional in hematopoietic stem cells and megakaryocyte progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18416-18422.	7.1	28
195	Evidence that \hat{I}^2 7 Integrin Regulates Hematopoietic Stem Cell Homing and Engraftment Through Interaction with MAdCAM-1. Stem Cells and Development, 2016, 25, 18-26.	2.1	26
196	Neogenin-1 distinguishes between myeloid-biased and balanced <i>Hoxb5</i> ⁺ mouse long-term hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25115-25125.	7.1	26
197	MAdCAM-1 Dependent Colonization of Developing Lymph Nodes Involves a Unique Subset of CD4+CD3-Hematolymphoid Cells. Cell Adhesion and Communication, 1998, 6, 97-103.	1.7	25
198	Neutrophil and monocyte kinetics play critical roles in mouse peritoneal adhesion formation. Blood Advances, 2019, 3, 2713-2721.	5.2	25

#	Article	IF	Citations
199	Sexual and asexual development: two distinct programs producing the same tunicate. Cell Reports, 2021, 34, 108681.	6.4	25
200	Osteoclast Derivation from Mouse Bone Marrow. Journal of Visualized Experiments, 2014, , e52056.	0.3	24
201	A Mechanism for Somatic Brain Mosaicism. Cell, 2016, 164, 593-595.	28.9	24
202	Normal and neoplastic stem cells. Novartis Foundation Symposium, 2005, 265, 35-50; discussion 50-4, 92-7.	1.1	24
203	EVOLUTION OF ALLORECOGNITION IN BOTRYLLID ASCIDIANS INFERRED FROM A MOLECULAR PHYLOGENY. Evolution; International Journal of Organic Evolution, 1998, 52, 746-756.	2.3	23
204	Dynamic Patterns of Clonal Evolution in Tumor Vasculature Underlie Alterations in Lymphocyte–Endothelial Recognition to Foster Tumor Immune Escape. Cancer Research, 2016, 76, 1348-1353.	0.9	23
205	The Ban on US Government Funding Research Using Human Fetal Tissues: How Does This Fit with the NIH Mission to Advance Medical Science for the Benefit of the Citizenry? Stem Cell Reports, 2019, 13, 777-786.	4.8	23
206	Screening for genes that regulate the differentiation of human megakaryocytic lineage cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9308-E9316.	7.1	22
207	The pleiotropic benefits of statins include the ability to reduce CD47 and amplify the effect of pro-efferocytic therapies in atherosclerosis., 2022, 1, 253-262.		22
208	Botryllus schlosseri (tunicata) whole colony irradiation: Do senescent zooid resorption and immunological resorption involve similar recognition events?. The Journal of Experimental Zoology, 1990, 253, 189-201.	1.4	21
209	Incidents of rejection and indifference in Fu/HC incompatible protochordate colonies. The Journal of Experimental Zoology, 1992, 263, 105-111.	1.4	21
210	Activation of physiological cell death mechanisms by a necrosis-causing agent., 1996, 34, 259-266.		21
211	Developmental cell death programs license cytotoxic cells to eliminate histocompatible partners. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6520-6525.	7.1	21
212	Phenotypic and Functional Changes Induced at the Clonal Level in Hematopoietic Stem Cells After 5-Fluorouracil Treatment. Blood, 1997, 89, 3596-3606.	1.4	21
213	Proteomic analysis of young and old mouse hematopoietic stem cells and their progenitors reveals post-transcriptional regulation in stem cells. ELife, 2020, 9, .	6.0	21
214	Upregulation of CD11A on Hematopoietic Stem Cells Denotes the Loss of Long-Term Reconstitution Potential. Stem Cell Reports, 2014, 3, 707-715.	4.8	19
215	Heme oxygenaseâ€1 deficiency triggers exhaustion of hematopoietic stem cells. EMBO Reports, 2020, 21, e47895.	4.5	19
216	Microanatomy of the Thymus: Its Relationship to T Cell Differentiation. Novartis Foundation Symposium, 1981, 84, 161-177.	1.1	19

#	Article	IF	Citations
217	In situ identification of idiotype-positive cells participating in the immune response to phosphorylcholine. European Journal of Immunology, 1986, 16, 393-399.	2.9	17
218	Lift NIH restrictions on chimera research. Science, 2015, 350, 640-640.	12.6	17
219	Semaphorin 3A mediated brain tumor stem cell proliferation and invasion in EGFRviii mutant gliomas. BMC Cancer, 2020, 20, 1213.	2.6	17
220	How One Thing Led to Another. Annual Review of Immunology, 2016, 34, 1-30.	21.8	16
221	Response to Comment on "Little Evidence for Developmental Plasticity of Adult Hematopoietic Stem Cells". Science, 2003, 299, 1317b-1317.	12.6	15
222	Safe and Effective <i>In Vivo</i> Targeting and Gene Editing in Hematopoietic Stem Cells: Strategies for Accelerating Development. Human Gene Therapy, 2021, 32, 31-42.	2.7	15
223	Coronary blood vessels from distinct origins converge to equivalent states during mouse and human development. ELife, 2021, 10, .	6.0	15
224	Failure to find alloimmune memory in the resorption phenomenon of Botryllus cytomictical chimera. European Journal of Immunology, 1990, 20, 1775-1779.	2.9	14
225	<i>RUNX3</i> levels in human hematopoietic progenitors are regulated by aging and dictate erythroid-myeloid balance. Haematologica, 2020, 105, 905-913.	3.5	14
226	Sequence and characterization of twoHSP70 genes in the colonial protochordateBotryllus schlosseri. Immunogenetics, 1996, 44, 134-142.	2.4	13
227	Hoxb5 defines the heterogeneity of self-renewal capacity in the hematopoietic stem cell compartment. Biochemical and Biophysical Research Communications, 2021, 539, 34-41.	2.1	13
228	RBC-Specific CD47 Pruning Confers Protection and Underlies the Transient Anemia in Patients Treated with Anti-CD47 Antibody 5F9. Blood, 2018, 132, 2327-2327.	1.4	13
229	A first-in-class, first-in-human phase 1 pharmacokinetic (PK) and pharmacodynamic (PD) study of Hu5F9-G4, an anti-CD47 monoclonal antibody (mAb), in patients with advanced solid tumors Journal of Clinical Oncology, 2018, 36, 3002-3002.	1.6	13
230	Adversarial domain translation networks for integrating large-scale atlas-level single-cell datasets. Nature Computational Science, 2022, 2, 317-330.	8.0	13
231	Brief Report: External Beam Radiation Therapy for the Treatment of Human Pluripotent Stem Cell-Derived Teratomas. Stem Cells, 2017, 35, 1994-2000.	3.2	12
232	Evolutionary perspective on the hematopoietic system through a colonial chordate: allogeneic immunity and hematopoiesis. Current Opinion in Immunology, 2020, 62, 91-98.	5.5	12
233	Cellular, Genetic, and Evolutionary Aspects of Lymphocyte Interactions with Highâ€Endothelial Venules. Novartis Foundation Symposium, 1980, 71, 265-286.	1.1	12
234	Evolutionarily conserved resistance to phagocytosis observed in melanoma cells is insensitive to upregulation of pro-phagocytic signals and to CD47 blockade. Melanoma Research, 2020, 30, 147-158.	1.2	12

#	Article	IF	CITATIONS
235	Was the MHC Made for the Immune System, or Did Immunity Take Advantage of an Ancient Polymorphic Gene Family Encoding Cell Surface Interaction Molecules? A Speculative Essay. International Reviews of Immunology, 1988, 3, 397-416.	3.3	11
236	Stem cells. Nature, 1991, 353, 26-26.	27.8	11
237	Normal and Neoplastic Stem Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 1-9.	1.1	11
238	B cell infiltration of the thymic medulla in new zealand black, new zealand white, and (new zealand) Tj ETQq0 0	O rgBT /Ov	erlock 10 Tf !
239	Surveillance of Stem Cell Fate and Function: A System for Assessing Cell Survival and Collagen Expression <i>In Situ</i>	3.1	10
240	Two distinct evolutionary conserved neural degeneration pathways characterized in a colonial chordate. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	10
241	Overexpression of CD47 is associated with brain overgrowth and 16p11.2 deletion syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
242	A Clinical PET Imaging Tracer ([18F]DASA-23) to Monitor Pyruvate Kinase M2–Induced Glycolytic Reprogramming in Glioblastoma. Clinical Cancer Research, 2021, 27, 6467-6478.	7.0	9
243	Evolution of normal and neoplastic tissue stem cells: progress after Robert Hooke. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140364.	4.0	8
244	Localized hepatic lobular regeneration by central-vein–associated lineage-restricted progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3654-3659.	7.1	8
245	Identification and Isolation of the Hematopoietic Stem Cell Niche Initiating Cell Population. Blood, 2008, 112, 3574-3574.	1.4	8
246	Cancer stem cells: advances in biology and clinical translationâ€"a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 142-163.	3.8	8
247	Lymphocyte homing receptors and the immune responsein vivo. BioEssays, 1986, 5, 112-116.	2.5	7
248	The E. Donnall Thomas Lecture: Normal and Neoplastic Stem Cells. Biology of Blood and Marrow Transplantation, 2008, 14, 849-858.	2.0	7
249	Response: mechanisms of targeting CD47-SIRPα in hematologic malignancies. Blood, 2012, 119, 4334-4335.	1.4	7
250	Clonal Origins of the Hematopoietic System: The Single Most Elegant Experiment. Journal of Immunology, 2014, 192, 4943-4944.	0.8	7
251	CD47 blockade reduces the pathologic features of experimental cerebral malaria and promotes survival of hosts with $\langle i \rangle$ Plasmodium $\langle i \rangle$ infection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
252	Inhibition of Chronic Myelogenous Leukemia Stem Cells with Novel Wnt Antagonists Blood, 2006, 108, 238-238.	1.4	7

#	Article	IF	Citations
253	Wounds Inhibit Tumor Growth In Vivo. Annals of Surgery, 2021, 273, 173-180.	4.2	6
254	Quantitation of Leukemic Stem Cell Populations Predicts Clinical Outcome in Acute Myeloid Leukaemia. Blood, 2011, 118, 638-638.	1.4	5
255	JSP191 As a Single-Agent Conditioning Regimen Results in Successful Engraftment, Donor Myeloid Chimerism, and Production of Donor Derived Naà ve Lymphocytes in Patients with Severe Combined Immunodeficiency (SCID). Blood, 2021, 138, 554-554.	1.4	5
256	2021 Jeffrey M. Hoeg Award Lecture: Defining the Role of Efferocytosis in Cardiovascular Disease: A Focus on the CD47 (Cluster of Differentiation 47) Axis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 101161ATVBAHA122317049.	2.4	5
257	Missplicing of Glycogen Synthase Kinase $3\hat{l}^2$: A Potential Mechanism of Blast Crisis Chronic Myeloid Leukemia Stem Cell Generation Blood, 2007, 110, 775-775.	1.4	4
258	The Isolation of Putative Major Histocompatibility Complex Gene Fragments from Dogfish and Nurse Shark. Annals of the New York Academy of Sciences, 1994, 712, 346-349.	3.8	3
259	Sequence and characterization of two HSP70 genes in the colonial protochordate Botryllus schlosseri. Immunogenetics, 1996, 44, 134-142.	2.4	3
260	Stem cells, cancer, and cancer stem cells., 0,.		3
261	Impact of magrolimab treatment in combination with azacitidine on red blood cells in patients with higher-risk myelodysplastic syndrome (HR-MDS) Journal of Clinical Oncology, 2022, 40, 7054-7054.	1.6	3
262	Reply to "More or less hematopoietic stem cells― Nature Medicine, 1996, 2, 1282-1283.	30.7	2
263	IMMU-18. HUMANIZED ANTI-CD47 ANTIBODY COMBINED WITH AN AGONIST ANTI-CD40 ANTIBODY IS AN EFFECTIVE TREATMENT FOR DIPG XENOGRAFTS WITH CRANIOSPINAL DISSEMINATION. Neuro-Oncology, 2017, 19, iv31-iv31.	1.2	2
264	Investigation of Hematopoietic Stem Cell and Progenitor Populations: Implication for Cell Fate Determination and Lineage Commitment Blood, 2005, 106, 801-801.	1.4	2
265	Inhibition of JAK2 V617F-Induced Erythroid Skewing of Hematopoietic Stem Cell Differentiation with a Selective JAK2 Antagonist Blood, 2006, 108, 3616-3616.	1.4	2
266	CD99 Identifies Disease Stem Cells in Acute Myeloid Leukemia and the Myelodysplastic Syndromes. Blood, 2012, 120, 210-210.	1.4	2
267	Unexplained Anemia In The Elderly Is Due To An Intrinsic Defect In Hematopoietic Stem Cells. Blood, 2013, 122, 2187-2187.	1.4	2
268	Aberrant Regulation of Wnt/Beta-Catenin Pathway Mediators in Chronic Myelogenous Leukemia Stem Cells Blood, 2006, 108, 2135-2135.	1.4	2
269	NPM1 Haploinsufficiency Results in Increased Numbers of Hematopoietic Stem Cells and Progenitor Cells Blood, 2009, 114, 738-738.	1.4	2
270	Clonal Evolution of Pre-Leukemic Hematopoietic Stem Cells Precedes Human Acute Myeloid Leukemia. Blood, 2011, 118, 4-4.	1.4	2

#	Article	IF	CITATIONS
271	The Unique Ontogeny Of Natural Killer Cells As Revealed By Genetic Barcoding In The Nonhuman Primate Model. Blood, 2013, 122, 15-15.	1.4	2
272	CD47 expression attenuates Ebola virus-induced immunopathology in mice. Antiviral Research, 2022, 197, 105226.	4.1	2
273	PNP Hydrogel Prevents Formation of Symblephara in Mice After Ocular Alkali Injury. Translational Vision Science and Technology, 2022, 11, 31.	2.2	2
274	Biology of Hematopoietic Stem and Progenitor Cells., 0,, 36-63.		1
275	<i>En1</i> fibroblasts and melanoma. Melanoma Management, 2015, 2, 191-192.	0.5	1
276	Expression of TCRâ€Vβ peptides by murine bone marrow cells does not identify Tâ€cell progenitors. Journal of Cellular and Molecular Medicine, 2015, 19, 1956-1964.	3.6	1
277	Partial Lobular Hepatectomy: A Surgical Model for Morphologic Liver Regeneration. Journal of Visualized Experiments, $2018, \ldots$	0.3	1
278	Epidermal-Derived Hedgehog Signaling Drives Mesenchymal Proliferation during Digit Tip Regeneration. Journal of Clinical Medicine, 2021, 10, 4261.	2.4	1
279	CD47 Is An Independent Prognostic Factor and Therapeutic Antibody Target on Human Acute Myeloid Leukemia Stem Cells. Blood, 2008, 112, 766-766.	1.4	1
280	Hematopoiesis in the Elderly: Age-Associated Effects in Frequency, Function, and Gene Expression of Human Hematopoietic Stem Cells Blood, 2009, 114, 1505-1505.	1.4	1
281	Therapeutic Antibody Targeting of CD47 Synergizes with Rituximab to Completely Eradicate Human B-Cell Lymphoma Xenografts Blood, 2009, 114, 2716-2716.	1.4	1
282	Hematopoietic Stem Cells Are the Disease-Initiating Cells in the Myelodysplastic Syndromes. Blood, 2011, 118, 789-789.	1.4	1
283	Bioluminescent Imaging of Human Leukemic Stem Cell Engraftment Blood, 2005, 106, 696-696.	1.4	1
284	CD47 Blockade Leads to Chemokine-Dependent Monocyte Infiltration and Loss of B Cells from the Splenic Marginal Zone. Journal of Immunology, 2022, 208, 1371-1377.	0.8	1
285	Mouse common lymphocyte progenitors: correcting a misconception. Nature Reviews Immunology, 2002, 2, 140-140.	22.7	0
286	Stability of a Flexible Rotor-Bearing System with a Transverse Crack. Mechanisms and Machine Science, 2019, , 3363-3373.	0.5	0
287	Absence of CD11a Expression Identifies Embryonic Hematopoietic Stem Cell Precursors via Competitive Neonatal Transplantation Assay. Frontiers in Cell and Developmental Biology, 2021, 9, 734176.	3.7	0
288	Increased Expression of CD47 Is a Constant Marker in Mouse and Human Myeloid Leukemias Blood, 2005, 106, 3260-3260.	1.4	0

#	Article	IF	CITATIONS
289	Antagonistic Effect of C/EBPα and Pax5 in Myeloid or Lymphoid Lineage Choice in Common Lymphoid Progenitors Blood, 2005, 106, 2282-2282.	1.4	0
290	Cell Cycle Regulation and Cell Fate Decisions in Hematopoietic Stem Cells Blood, 2005, 106, 1349-1349.	1.4	0
291	Angiogenesis enhances the proliferation and function of cultured human fetal liver progenitor cells. FASEB Journal, 2006, 20, A629.	0.5	0
292	The Wilms' Tumor Gene WT1 Is Over-Expressed in Immature Leukemia Cells but Not Necessary for Leukemia Development in Mouse Leukemia Models Blood, 2006, 108, 1429-1429.	1.4	0
293	Antibody-Based Depletion of Hematopoietic Stem Cells Empties Niches for Efficient Transplantation Blood, 2007, 110, LB2-LB2.	1.4	0
294	MicroRNA Profiling of Human Acute Myeloid Leukemia and Normal Hematopoietic Stem/Progenitor Cells Reveals a Leukemia Stem Cell Signature Blood, 2007, 110, 779-779.	1.4	0
295	Myelodysplastic Syndromes Are Characterized by Gene Expression Changes in Hematopoietic Stem Cells and Alterations in Hematopoietic Stem Cell and Myeloid Progenitor Composition Blood, 2009, 114, 1762-1762.	1.4	0
296	Niche Recycling through Division-Independent Egress of Hematopoietic Stem Cells Blood, 2009, 114, 79-79.	1.4	0
297	Single Cell Phospho-Flow Analysis of Cytokine Stimulation in Human Hematopoietic Progenitors Reveals That G-CSF Acts Directly On Human Hematopoietic Stem Cells Blood, 2009, 114, 3617-3617.	1.4	0
298	ABT-737 Targets Leukemic Stem Cells In Mouse Models of Mutant NRASD12/hBCL-2- Mediated Acute Myeloid Leukemia Progression with Increased Survival. Blood, 2010, 116, 3308-3308.	1.4	0
299	Clonal Level Lineage Commitment of Mouse Hematopoietic Stem Cells in Vivo. Blood, 2012, 120, 27-27.	1.4	0
300	Role of \hat{I}^2 7 Integrin in Hematopoietic Stem Cell Trafficking Blood, 2012, 120, 2992-2992.	1.4	0
301	Prospective Isolation Of Human Erythroid Lineage-Committed Progenitors. Blood, 2013, 122, 3418-3418.	1.4	0
302	Super Cross-Presentation of Tumor Antigens to Elicit Anti-Lymphoma Immunity By Synthetic Design of an Anti-Phosphatidylserine Bridge Protein. Blood, 2016, 128, 1844-1844.	1.4	0