
Tamas Balla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6739121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	De novo lossâ€ofâ€function variant in <scp> <i>PTDSS1</i> </scp> is associated with developmental delay. American Journal of Medical Genetics, Part A, 2022, , .	1.2	0
2	Metabolic routing maintains the unique fatty acid composition of phosphoinositides. EMBO Reports, 2022, 23, .	4.5	13
3	LIPID transfer proteins regulate store-operated calcium entry via control of plasma membrane phosphoinositides. Cell Calcium, 2022, 106, 102631.	2.4	5
4	Biallelic <i>PI4KA</i> variants cause neurological, intestinal and immunological disease. Brain, 2021, 144, 3597-3610.	7.6	17
5	Palmitoylation targets the calcineurin phosphatase to the phosphatidylinositol 4-kinase complex at the plasma membrane. Nature Communications, 2021, 12, 6064.	12.8	18
6	Calcium-Prolactin Secretion Coupling in Rat Pituitary Lactotrophs Is Controlled by PI4-Kinase Alpha. Frontiers in Endocrinology, 2021, 12, 790441.	3.5	5
7	PI(3,4)P2-mediated cytokinetic abscission prevents early senescence and cataract formation. Science, 2021, 374, eabk0410.	12.6	37
8	Lipid synthesis and transport are coupled to regulate membrane lipid dynamics in the endoplasmic reticulum. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158461.	2.4	29
9	The functional universe of membrane contact sites. Nature Reviews Molecular Cell Biology, 2020, 21, 7-24.	37.0	386
10	Integrated regulation of the phosphatidylinositol cycle and phosphoinositideâ€driven lipid transport at ERâ€PM contact sites. Traffic, 2020, 21, 200-219.	2.7	25
11	Characterization of the c10orf76â€Pl4KB complex and its necessity for Golgi Pl4P levels and enterovirus replication. EMBO Reports, 2020, 21, e48441.	4.5	21
12	Phosphoinositides and calcium signaling; a marriage arranged at ER-PM contact sites. Current Opinion in Physiology, 2020, 17, 149-157.	1.8	18
13	Emerging roles of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate as regulators of multiple steps in autophagy. Journal of Biochemistry, 2020, 168, 329-336.	1.7	17
14	Myelination of peripheral nerves is controlled by PI4KB through regulation of Schwann cell Golgi function. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28102-28113.	7.1	15
15	Defining the subcellular distribution and metabolic channeling of phosphatidylinositol. Journal of Cell Biology, 2020, 219, .	5.2	57
16	Phosphatidylinositol-4-kinase IIα licenses phagosomes for TLR4 signaling and MHC-II presentation in dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28251-28262.	7.1	14
17	Editorial: Hormone Action and Signal Transduction in Endocrine Physiology and Disease. Frontiers in Endocrinology, 2020, 11, 589.	3.5	0
18	ORP3 phosphorylation regulates phosphatidylinositol 4-phosphate and Ca2+ dynamics at PM-ER contact sites. Journal of Cell Science, 2020, 133, .	2.0	32

#	Article	IF	CITATIONS
19	Ribosome-associated vesicles: A dynamic subcompartment of the endoplasmic reticulum in secretory cells. Science Advances, 2020, 6, eaay9572.	10.3	42
20	Rushing to maintain plasma membrane phosphoinositide levels. Journal of General Physiology, 2020, 152, .	1.9	0
21	A large scale high-throughput screen identifies chemical inhibitors of phosphatidylinositol 4-kinase type II alpha. Journal of Lipid Research, 2019, 60, 683-693.	4.2	16
22	Lipid Dynamics at Contact Sites Between the Endoplasmic Reticulum and Other Organelles. Annual Review of Cell and Developmental Biology, 2019, 35, 85-109.	9.4	57
23	Editorial overview: Signaling dynamics moving to the nanoscale. Current Opinion in Cell Biology, 2019, 57, iii-vi.	5.4	0
24	Phosphatidylinositol 4,5â€bisphosphate controls Rab7 and <scp>PLEKHM</scp> 1 membrane cycling during autophagosome–lysosome fusion. EMBO Journal, 2019, 38, e100312.	7.8	63
25	Monitoring Non-vesicular Transport of Phosphatidylserine and Phosphatidylinositol 4-Phosphate in Intact Cells by BRET Analysis. Methods in Molecular Biology, 2019, 1949, 13-22.	0.9	1
26	Inactivation of the PtdIns(4)P phosphatase Sac1 at the Golgi by H2O2 produced via Ca2+-dependent Duox in EGF-stimulated cells. Free Radical Biology and Medicine, 2019, 131, 40-49.	2.9	7
27	Accumulation of PtdIns(4)P at the Golgi mediated by reversible oxidation of the PtdIns(4)P phosphatase Sac1 by H2O2. Free Radical Biology and Medicine, 2019, 130, 426-435.	2.9	1
28	Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. Advances in Experimental Medicine and Biology, 2019, 1111, 77-137.	1.6	32
29	Phosphatidylinositol 4,5â€bisphosphate controls Rab7 and <scp>PLEKHM</scp> 1 membrane cycling during autophagosome–lysosome fusion. EMBO Journal, 2019, 38, .	7.8	33
30	PI(4,5)P2 controls plasma membrane PI4P and PS levels via ORP5/8 recruitment to ER–PM contact sites. Journal of Cell Biology, 2018, 217, 1797-1813.	5.2	153
31	Ca ²⁺ and lipid signals hold hands at endoplasmic reticulum–plasma membrane contact sites. Journal of Physiology, 2018, 596, 2709-2716.	2.9	35
32	Schwann-Cell-Specific Deletion of Phosphatidylinositol 4-Kinase Alpha Causes Aberrant Myelination. Cell Reports, 2018, 23, 2881-2890.	6.4	33
33	Quantifying lipid changes in various membrane compartments using lipid binding protein domains. Cell Calcium, 2017, 64, 72-82.	2.4	61
34	Multiphasic dynamics of phosphatidylinositol 4-phosphate during phagocytosis. Molecular Biology of the Cell, 2017, 28, 128-140.	2.1	85
35	Plasma membrane phosphatidylinositol 4-phosphate and 4,5-bisphosphate determine the distribution and function of K-Ras4B but not H-Ras proteins. Journal of Biological Chemistry, 2017, 292, 18862-18877.	3.4	25
36	Molecular anatomy of the early events in STIM1 activation; oligomerization or conformational change?. Journal of Cell Science, 2017, 130, 2821-2832.	2.0	16

#	Article	IF	CITATIONS
37	Lenz-Majewski syndrome: How a single mutation leads to complex changes in lipid metabolism. Journal of Rare Diseases Research & Treatment, 2017, 2, 47-51.	1.1	4
38	Astrocytes spatially restrict <scp>VEGF</scp> signaling by polarized secretion and incorporation of <scp>VEGF</scp> into the actively assembling extracellular matrix. Glia, 2016, 64, 440-456.	4.9	18
39	Lenz-Majewski mutations in <i>PTDSS1</i> affect phosphatidylinositol 4-phosphate metabolism at ER-PM and ER-Golgi junctions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4314-4319.	7.1	87
40	Phosphatidylinositol and phosphatidic acid transport between the ER and plasma membrane during PLC activation requires the Nir2 protein. Biochemical Society Transactions, 2016, 44, 197-201.	3.4	30
41	Structural insights and in vitro reconstitution of membrane targeting and activation of human PI4KB by the ACBD3 protein. Scientific Reports, 2016, 6, 23641.	3.3	81
42	Lipid code for membrane recycling. Nature, 2016, 529, 292-293.	27.8	8
43	BRET-monitoring of the dynamic changes of inositol lipid pools in living cells reveals a PKC-dependent PtdIns4P increase upon EGF and M3 receptor activation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 177-187.	2.4	44
44	EFR3s are palmitoylated plasma membrane proteins that control responsiveness to G protein-coupled receptors. Journal of Cell Science, 2015, 128, 118-28.	2.0	31
45	The ML1Nx2 Phosphatidylinositol 3,5-Bisphosphate Probe Shows Poor Selectivity in Cells. PLoS ONE, 2015, 10, e0139957.	2.5	32
46	Phosphatidylinositol-Phosphatidic Acid Exchange by Nir2 at ER-PM Contact Sites Maintains Phosphoinositide Signaling Competence. Developmental Cell, 2015, 33, 549-561.	7.0	190
47	Investigation of the Fate of Type I Angiotensin Receptor after Biased Activation. Molecular Pharmacology, 2015, 87, 972-981.	2.3	26
48	Germline recessive mutations in PI4KA are associated with perisylvian polymicrogyria, cerebellar hypoplasia and arthrogryposis. Human Molecular Genetics, 2015, 24, 3732-3741.	2.9	56
49	Polyphosphoinositide binding domains: Key to inositol lipid biology. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 746-758.	2.4	213
50	Phosphatidylinositol 4-phosphate and phosphatidylinositol 3-phosphate regulate phagolysosome biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4636-4641.	7.1	72
51	Measurement of Inositol 1,4,5-Trisphosphate in Living Cells Using an Improved Set of Resonance Energy Transfer-Based Biosensors. PLoS ONE, 2015, 10, e0125601.	2.5	19
52	Nir2 Plays a Central Role in ERâ€PM Junctions Maintaining Phosphoinositide Signaling Competence. FASEB Journal, 2015, 29, LB177.	0.5	0
53	Pharmacological and Genetic Targeting of the PI4KA Enzyme Reveals Its Important Role in Maintaining Plasma Membrane Phosphatidylinositol 4-Phosphate and Phosphatidylinositol 4,5-Bisphosphate Levels. Journal of Biological Chemistry, 2014, 289, 6120-6132.	3.4	134
54	A tail of new lipids. EMBO Journal, 2014, 33, 2140-2141.	7.8	2

#	Article	IF	CITATIONS
55	A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. Journal of Cell Biology, 2014, 205, 113-126.	5.2	358
56	Secretion of VEGF-165 has unique characteristics, including shedding from the plasma membrane. Molecular Biology of the Cell, 2014, 25, 1061-1072.	2.1	29
57	The crystal structure of the phosphatidylinositol 4â€kinase <scp>II</scp> α. EMBO Reports, 2014, 15, 1085-1092.	4.5	61
58	Distinct Properties of the Two Isoforms of CDP-Diacylglycerol Synthase. Biochemistry, 2014, 53, 7358-7367.	2.5	47
59	Endosomal sorting of VAMP3 is regulated by PI4K2A. Journal of Cell Science, 2014, 127, 3745-56.	2.0	50
60	Inositol lipid regulation of lipid transfer in specialized membrane domains. Trends in Cell Biology, 2013, 23, 270-278.	7.9	41
61	Recruitment of arfaptins to the trans-Golgi network by PI(4)P and their involvement in cargo export. EMBO Journal, 2013, 32, 1717-1729.	7.8	61
62	βIII Spectrin Regulates the Structural Integrity and the Secretory Protein Transport of the Golgi Complex. Journal of Biological Chemistry, 2013, 288, 2157-2166.	3.4	19
63	Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation. Physiological Reviews, 2013, 93, 1019-1137.	28.8	1,281
64	The secretion of VEGF165 involves a shedding step from the cell surface. FASEB Journal, 2013, 27, 591.4.	0.5	0
65	A new role for plasma membrane phosphatidylinositol 4â€phosphate (PI4P)?. FASEB Journal, 2013, 27, lb84.	0.5	0
66	Acute depletion of plasma membrane Phosphatidylinositol 4,5-bisphosphate impairs specific steps in G protein-coupled receptor endocytosis. Journal of Cell Science, 2012, 125, 2185-97.	2.0	44
67	Acute depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate impairs specific steps in endocytosis of the G-protein-coupled receptor. Journal of Cell Science, 2012, 125, 3013-3013.	2.0	13
68	Two phosphatidylinositol 4-kinases control lysosomal delivery of the Gaucher disease enzyme, β-glucocerebrosidase. Molecular Biology of the Cell, 2012, 23, 1533-1545.	2.1	103
69	PI4P and PI(4,5)P ₂ Are Essential But Independent Lipid Determinants of Membrane Identity. Science, 2012, 337, 727-730.	12.6	435
70	Phosphatidylinositol 4-kinases: hostages harnessed to build panviral replication platforms. Trends in Biochemical Sciences, 2012, 37, 293-302.	7.5	114
71	Recruitment and Activation of a Lipid Kinase by Hepatitis C Virus NS5A Is Essential for Integrity of the Membranous Replication Compartment. Cell Host and Microbe, 2011, 9, 32-45.	11.0	435
72	A Highly Dynamic ER-Derived Phosphatidylinositol-Synthesizing Organelle Supplies Phosphoinositides to Cellular Membranes. Developmental Cell, 2011, 21, 813-824.	7.0	165

#	Article	IF	CITATIONS
73	Genetic and functional studies of phosphatidyl-inositol 4-kinase type IIIα. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 476-483.	2.4	14
74	Intracellular curvature-generating proteins in cell-to-cell fusion. Biochemical Journal, 2011, 440, 185-193.	3.7	38
75	A homogeneous and nonisotopic assay for phosphatidylinositol 4-kinases. Analytical Biochemistry, 2011, 417, 97-102.	2.4	61
76	Demonstration of Angiotensin II-induced Ras Activation in the trans-Golgi Network and Endoplasmic Reticulum Using Bioluminescence Resonance Energy Transfer-based Biosensors. Journal of Biological Chemistry, 2011, 286, 5319-5327.	3.4	7
77	Acute manipulation of Golgi phosphoinositides to assess their importance in cellular trafficking and signaling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8225-8230.	7.1	146
78	Activation of STIM1-Orai1 Involves an Intramolecular Switching Mechanism. Science Signaling, 2010, 3, ra82.	3.6	183
79	Putting G protein–coupled receptor-mediated activation of phospholipase C in the limelight. Journal of General Physiology, 2010, 135, 77-80.	1.9	6
80	Imaging Interorganelle Contacts and Local Calcium Dynamics at the ER-Mitochondrial Interface. Molecular Cell, 2010, 39, 121-132.	9.7	630
81	Viral Reorganization of the Secretory Pathway Generates Distinct Organelles for RNA Replication. Cell, 2010, 141, 799-811.	28.9	591
82	Dependence of STIM1/Orai1-mediated Calcium Entry on Plasma Membrane Phosphoinositides. Journal of Biological Chemistry, 2009, 284, 21027-21035.	3.4	128
83	Crucial role of phosphatidylinositol 4-kinase IIIα in development of zebrafish pectoral fin is linked to phosphoinositide 3-kinase and FGF signaling. Journal of Cell Science, 2009, 122, 4303-4310.	2.0	34
84	A PH Domain in the Arf GTPase-activating Protein (GAP) ARAP1 Binds Phosphatidylinositol 3,4,5-Trisphosphate and Regulates Arf GAP Activity Independently of Recruitment to the Plasma Membranes. Journal of Biological Chemistry, 2009, 284, 28069-28083.	3.4	31
85	Dual roles for the <i>Drosophila</i> PI 4-kinase Four wheel drive in localizing Rab11 during cytokinesis. Journal of Cell Biology, 2009, 187, 847-858.	5.2	115
86	Enteropathogenic <i>Escherichia coli</i> Subverts Phosphatidylinositol 4,5-Bisphosphate and Phosphatidylinositol 3,4,5-Trisphosphate upon Epithelial Cell Infection. Molecular Biology of the Cell, 2009, 20, 544-555.	2.1	67
87	Green light to illuminate signal transduction events. Trends in Cell Biology, 2009, 19, 575-586.	7.9	26
88	Regulation of Ca2+ entry by inositol lipids in mammalian cells by multiple mechanisms. Cell Calcium, 2009, 45, 527-534.	2.4	32
89	Store-operated Ca2+ influx and subplasmalemmal mitochondria. Cell Calcium, 2009, 46, 49-55.	2.4	32
90	Live cell imaging with protein domains capable of recognizing phosphatidylinositol 4,5-bisphosphate; a comparative study. BMC Cell Biology, 2009, 10, 67.	3.0	105

#	Article	IF	CITATIONS
91	Visualization of Cellular Phosphoinositide Pools with GFPâ€Fused Proteinâ€Domains. Current Protocols in Cell Biology, 2009, 42, Unit 24.4.	2.3	70
92	STIM and Orai: the long-awaited constituents of store-operated calcium entry. Trends in Pharmacological Sciences, 2009, 30, 118-128.	8.7	167
93	Phosphoinositide Signaling: New Tools and Insights. Physiology, 2009, 24, 231-244.	3.1	140
94	Finding Partners for PI3KÎ ³ : When 84 Is Better Than 101. Science Signaling, 2009, 2, pe35.	3.6	4
95	Live cell imaging of phosphoinositides with expressed inositide binding protein domains. Methods, 2008, 46, 167-176.	3.8	43
96	Design of Drug-Resistant Alleles of Type-III Phosphatidylinositol 4-Kinases Using Mutagenesis and Molecular Modeling. Biochemistry, 2008, 47, 1599-1607.	2.5	33
97	c-Met Must Translocate to the Nucleus to Initiate Calcium Signals. Journal of Biological Chemistry, 2008, 283, 4344-4351.	3.4	135
98	Maintenance of Hormone-sensitive Phosphoinositide Pools in the Plasma Membrane Requires Phosphatidylinositol 4-Kinase IIIα. Molecular Biology of the Cell, 2008, 19, 711-721.	2.1	174
99	G Protein-coupled Receptor-promoted Trafficking of Gβ ₁ γ ₂ Leads to AKT Activation at Endosomes via a Mechanism Mediated by Gβ ₁ γ ₂ -Rab11a Interaction. Molecular Biology of the Cell, 2008, 19, 4188-4200.	2.1	68
100	Dual Regulation of TRPV1 by Phosphoinositides. Journal of Neuroscience, 2007, 27, 7070-7080.	3.6	241
101	Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3793-3798.	7.1	240
102	Regulation of connexin43 gap junctional communication by phosphatidylinositol 4,5-bisphosphate. Journal of Cell Biology, 2007, 177, 881-891.	5.2	74
103	Visualization and Manipulation of Plasma Membrane-Endoplasmic Reticulum Contact Sites Indicates the Presence of Additional Molecular Components within the STIM1-Orai1 Complex. Journal of Biological Chemistry, 2007, 282, 29678-29690.	3.4	228
104	A membrane capture assay for lipid kinase activity. Nature Protocols, 2007, 2, 2459-2466.	12.0	44
105	Active Arf6 Recruits ARNO/Cytohesin GEFs to the PM by Binding Their PH Domains. Molecular Biology of the Cell, 2007, 18, 2244-2253.	2.1	190
106	Imaging and manipulating phosphoinositides in living cells. Journal of Physiology, 2007, 582, 927-937.	2.9	57
107	Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nature Cell Biology, 2007, 9, 36-44.	10.3	277
108	Visualization and manipulation of phosphoinositide dynamics in live cells using engineered protein domains. Pflugers Archiv European Journal of Physiology, 2007, 455, 69-82.	2.8	44

#	Article	IF	CITATIONS
109	Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. Journal of Cell Biology, 2006, 175, 377-382.	5.2	316
110	A Pharmacological Map of the PI3-K Family Defines a Role for p110α in Insulin Signaling. Cell, 2006, 125, 733-747.	28.9	1,074
111	Live cell imaging of phosphoinositide dynamics with fluorescent protein domains. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 957-967.	2.4	128
112	Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends in Cell Biology, 2006, 16, 351-361.	7.9	346
113	Nucleolar localization of phosphatidylinositol 4-kinase PI4K230 in various mammalian cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2006, 69A, 1174-1183.	1.5	37
114	Phosphoinositide-derived messengers in endocrine signaling. Journal of Endocrinology, 2006, 188, 135-153.	2.6	71
115	Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. Journal of Cell Biology, 2006, 175, 901-911.	5.2	1,107
116	Phosphatidylinositol 4-Kinase IIIÎ ² Regulates the Transport of Ceramide between the Endoplasmic Reticulum and Golgi. Journal of Biological Chemistry, 2006, 281, 36369-36377.	3.4	120
117	Structural and functional features and significance of the physical linkage between ER and mitochondria. Journal of Cell Biology, 2006, 174, 915-921.	5.2	1,123
118	PIP2hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+channels. Journal of Physiology, 2005, 564, 117-129.	2.9	164
119	Control of Calcium Signal Propagation to the Mitochondria by Inositol 1,4,5-Trisphosphate-binding Proteins. Journal of Biological Chemistry, 2005, 280, 12820-12832.	3.4	35
120	Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions. Journal of Cell Science, 2005, 118, 2093-2104.	2.0	227
121	Phosphoinositide 3-Kinase Is Required for Intracellular Listeria monocytogenes Actin-based Motility and Filopod Formation. Journal of Biological Chemistry, 2005, 280, 11379-11386.	3.4	18
122	Targeted expression of the inositol 1,4,5-triphosphate receptor (IP3R) ligand-binding domain releases Ca2+ via endogenous IP3R channels. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7859-7864.	7.1	41
123	A Plasma Membrane Pool of Phosphatidylinositol 4-Phosphate Is Generated by Phosphatidylinositol 4-Kinase Type-III Alpha: Studies with the PH Domains of the Oxysterol Binding Protein and FAPP1. Molecular Biology of the Cell, 2005, 16, 1282-1295.	2.1	241
124	Selective cellular effects of overexpressed pleckstrin-homology domains that recognize PtdIns(3,4,5)P3 suggest their interaction with protein binding partners. Journal of Cell Science, 2005, 118, 4879-4888.	2.0	133
125	Found in the crystal: phospholipid ligands for nuclear orphan receptors. Trends in Endocrinology and Metabolism, 2005, 16, 289-290.	7.1	2
126	The Pleckstrin Homology Domain of Phosphoinositide-specific Phospholipase Cδ4 Is Not a Critical Determinant of the Membrane Localization of the Enzyme. Journal of Biological Chemistry, 2004, 279, 24362-24371.	3.4	29

#	Article	IF	CITATIONS
127	Differential PI 3-kinase dependence of early and late phases of recycling of the internalized AT1 angiotensin receptor. Journal of Cell Biology, 2002, 157, 1211-1222.	5.2	161
128	Characterization of Type II Phosphatidylinositol 4-Kinase Isoforms Reveals Association of the Enzymes with Endosomal Vesicular Compartments. Journal of Biological Chemistry, 2002, 277, 20041-20050.	3.4	186
129	Visualizing Cellular Phosphoinositide Pools with GFP-Fused Protein-Modules. Science Signaling, 2002, 2002, pl3-pl3.	3.6	116
130	Structural Determinants of Ras-Raf Interaction Analyzed in Live Cells. Molecular Biology of the Cell, 2002, 13, 2323-2333.	2.1	75
131	Inositol Lipid Binding and Membrane Localization of Isolated Pleckstrin Homology (PH) Domains. Journal of Biological Chemistry, 2002, 277, 27412-27422.	3.4	111
132	The dynamics of plasma membrane PtdIns(4,5) <i>P</i> 2 at fertilization of mouse eggs. Journal of Cell Science, 2002, 115, 2139-2149.	2.0	60
133	The dynamics of plasma membrane PtdIns(4,5)P(2) at fertilization of mouse eggs. Journal of Cell Science, 2002, 115, 2139-49.	2.0	50
134	Restricted Accumulation of Phosphatidylinositol 3-Kinase Products in a Plasmalemmal Subdomain during FcÎ ³ Receptor-Mediated Phagocytosis. Journal of Cell Biology, 2001, 153, 1369-1380.	5.2	266
135	Inhibition of Na,K-ATPase Activates PI3 Kinase and Inhibits Apoptosis in LLC-PK1 Cells. Biochemical and Biophysical Research Communications, 2001, 285, 46-51.	2.1	64
136	Pharmacology of Phosphoinositides, Regulators of Multiple Cellular Functions. Current Pharmaceutical Design, 2001, 7, 475-507.	1.9	49
137	Interaction of Neuronal Calcium Sensor-1 (NCS-1) with Phosphatidylinositol 4-Kinase β Stimulates Lipid Kinase Activity and Affects Membrane Trafficking in COS-7 Cells. Journal of Biological Chemistry, 2001, 276, 40183-40189.	3.4	144
138	Monitoring Agonist-induced Phospholipase C Activation in Live Cells by Fluorescence Resonance Energy Transfer. Journal of Biological Chemistry, 2001, 276, 15337-15344.	3.4	225
139	Localization of two distinct type III phosphatidylinositol 4-kinase enzyme mRNAs in the rat. American Journal of Physiology - Cell Physiology, 2000, 278, C914-C920.	4.6	17
140	Intracellular Ph Regulation by Na+/H+ Exchange Requires Phosphatidylinositol 4,5-Bisphosphate. Journal of Cell Biology, 2000, 150, 213-224.	5.2	185
141	A Pleckstrin Homology Domain Specific for Phosphatidylinositol 4,5-Bisphosphate (PtdIns-4,5-P2) and Fused to Green Fluorescent Protein Identifies Plasma Membrane PtdIns-4,5-P2 as Being Important in Exocytosis. Journal of Biological Chemistry, 2000, 275, 17878-17885.	3.4	175
142	Characterization of Recombinant Phosphatidylinositol 4-Kinase β Reveals Auto- and Heterophosphorylation of the Enzyme. Journal of Biological Chemistry, 2000, 275, 14642-14648.	3.4	28
143	How accurately can we image inositol lipids in living cells?. Trends in Pharmacological Sciences, 2000, 21, 238-241.	8.7	142
144	Phosphatidylinositol 3-Kinase-dependent Membrane Association of the Bruton's Tyrosine Kinase Pleckstrin Homology Domain Visualized in Single Living Cells. Journal of Biological Chemistry, 1999, 274, 10983-10989.	3.4	259

#	Article	IF	CITATIONS
145	Phosphatidylinositol 4-kinases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1998, 1436, 69-85.	2.4	80
146	Visualization of Phosphoinositides That Bind Pleckstrin Homology Domains: Calcium- and Agonist-induced Dynamic Changes and Relationship to Myo-[3H]inositol-labeled Phosphoinositide Pools. Journal of Cell Biology, 1998, 143, 501-510.	5.2	765
147	Signaling events activated by angiotensin II receptors: What goes before and after the calcium signals. Endocrine Research, 1998, 24, 335-344.	1.2	27
148	Isolation and Molecular Cloning of Wortmannin-sensitive Bovine Type III Phosphatidylinositol 4-Kinases. Journal of Biological Chemistry, 1997, 272, 18358-18366.	3.4	81
149	Characterization of a Soluble Adrenal Phosphatidylinositol 4-Kinase Reveals Wortmannin Sensitivity of Type III Phosphatidylinositol Kinasesâ€. Biochemistry, 1996, 35, 3587-3594.	2.5	107
150	The ligand binding site of the angiotensin AT1 receptor. Trends in Pharmacological Sciences, 1996, 17, 135-140.	8.7	103
151	Regulation of Angiotensin II-stimulated Ca2+ Oscillations by Ca2+ Influx Mechanisms in Adrenal Glomerulosa Cells. Journal of Biological Chemistry, 1996, 271, 22063-22069.	3.4	21
152	Critical Role of a Conserved Intramembrane Tyrosine Residue in Angiotensin II Receptor Activation. Journal of Biological Chemistry, 1995, 270, 9702-9705.	3.4	55
153	A Conserved NPLFY Sequence Contributes to Agonist Binding and Signal Transduction but Is Not an Internalization Signal for the Type 1 Angiotensin II Receptor. Journal of Biological Chemistry, 1995, 270, 16602-16609.	3.4	115
154	Phosphoinositides and calcium signaling. Trends in Endocrinology and Metabolism, 1994, 5, 250-255.	7.1	13
155	High-performance reversed-phase ion-pair chromatographic study of myo-inositol phosphates. Journal of Chromatography A, 1990, 523, 201-216.	3.7	21
156	Modulation of Agonist-Induced Inositol Phosphate Metabolism by Cyclic Adenosine 3′,5′- Monophosphate in Adrenal Glomerulosa Cells. Molecular Endocrinology, 1990, 4, 1712-1719.	3.7	10
157	Inositol polyphosphate production and regulation of cytosolic calcium during the biphasic activation of adrenal glomerulosa cells by angiotensin II. Archives of Biochemistry and Biophysics, 1989, 270, 398-403.	3.0	39
158	Metabolism of Inositol 1,4,5-Trisphosphate to Higher Inositol Phosphates in Bovine Adrenal Cytosol. American Journal of Hypertension, 1989, 2, 387-394.	2.0	15
159	Specific Receptors for Inositol 1,4,5-Trisphosphate in Endocrine Target Tissues. , 1989, , 193-203.		0
160	CONTROL OF GLOMERULOSA CELL FUNCTION BY ANGIOTENSIN II: TRANSDUCTION BY G-PROTEINS AND INOSITOL POLYPHOSPHATES. Clinical and Experimental Pharmacology and Physiology, 1988, 15, 501-515.	1.9	35
161	Metabolism of inositol-1,3,4,6-tetrakisphosphate to inositol pentakisphosphate in adrenal glomerulosa cells. Biochemical and Biophysical Research Communications, 1988, 157, 1247-1252.	2.1	24
162	Angiotensin-induced formation and metabolism of inositol polyphosphates in bovine adrenal glomerulosa cells. Biochemical and Biophysical Research Communications, 1987, 142, 15-22.	2.1	46

#	Article	IF	CITATIONS
163	Formation of inositol 1,3,4,6-tetrakisphosphate during angiotensin II action in bovine adrenal glomerulosa cells. Biochemical and Biophysical Research Communications, 1987, 148, 199-205.	2.1	34
164	The effect of angiotensin II on arachidonate metabolism in adrenal glomerulosa cells. Biochemical Pharmacology, 1985, 34, 3439-3444.	4.4	17
165	Angiotensin II stimulates phosphatidylinositol turnover in adrenal glomerulosa cells by a calcium-independent mechanism. Lipids and Lipid Metabolism, 1983, 753, 133-135.	2.6	10
166	Possible role of calcium uptake and calmodulin in adrenal glomerulosa cells: Effects of verapamil and trifluoperazine. Biochemical Pharmacology, 1982, 31, 1267-1271.	4.4	58
167	The effect of various calmodulin inhibitors of the response of adrenal glomerulosa cells to angiotensin II and cyclic AMP. Biochemical Pharmacology, 1982, 31, 3705-3707.	4.4	18
168	Control of phosphatidylinositol turnover in adrenal glomerulosa cells. Lipids and Lipid Metabolism, 1982, 713, 352-357.	2.6	35
169	Role of calcium ions and calmodulin in the aldosterone stimulating action of prostaglandin E2. The Journal of Steroid Biochemistry, 1982, 16, 493-494.	1.1	5
170	Phosphatidylinositol-4-kinase type III beta. The AFCS-nature Molecule Pages, 0, , .	0.2	0
171	Phosphatidylinositol 4-kinase, type III, alpha. The AFCS-nature Molecule Pages, 0, , .	0.2	0