Luis Martinez-Gil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6738861/publications.pdf

Version: 2024-02-01

331670 377865 1,263 38 21 34 citations h-index g-index papers 41 41 41 2179 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cetylpyridinium chloride promotes disaggregation of SARS-CoV-2 virus-like particles. Journal of Oral Microbiology, 2022, 14, 2030094.	2.7	16
2	Towards peptide-based tunable multistate memristive materials. Physical Chemistry Chemical Physics, 2021, 23, 1802-1810.	2.8	7
3	The importance of transmembrane domain interactions in the viral control of apoptosis. Molecular and Cellular Oncology, 2021, 8, 1911290.	0.7	0
4	Methodological approaches for the analysis of transmembrane domain interactions: A systematic review. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183712.	2.6	3
5	Folding and Insertion of Transmembrane Helices at the ER. International Journal of Molecular Sciences, 2021, 22, 12778.	4.1	5
6	SARS-CoV-2 envelope protein topology in eukaryotic membranes. Open Biology, 2020, 10, 200209.	3.6	56
7	Viral Bcl2s' transmembrane domain interact with host Bcl2 proteins to control cellular apoptosis. Nature Communications, 2020, 11, 6056.	12.8	16
8	Insertion of Bacteriorhodopsin Helix C Variants into Biological Membranes. ACS Omega, 2020, 5, 556-560.	3.5	3
9	A Bimolecular Multicellular Complementation System for the Detection of Syncytium Formation: A New Methodology for the Identification of Nipah Virus Entry Inhibitors. Viruses, 2019, 11, 229.	3.3	10
10	The Role of Self-Assembling Lipid Molecules in Vaccination. Advances in Biomembranes and Lipid Self-Assembly, 2018, 27, 1-37.	0.6	1
11	Proteomic composition of Nipah virus-like particles. Journal of Proteomics, 2018, 172, 190-200.	2.4	16
12	Membrane insertion and topology of the translocon-associated protein (TRAP) gamma subunit. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 903-909.	2.6	18
13	Exploring the Human-Nipah Virus Protein-Protein Interactome. Journal of Virology, 2017, 91, .	3.4	38
14	The role of hydrophobic matching on transmembrane helix packing in cells. Cell Stress, 2017, 1, 90-106.	3.2	37
15	Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation. Science, 2016, 352, aad7993.	12.6	132
16	NMR Investigation of Structures of G-protein Coupled Receptor Folding Intermediates. Journal of Biological Chemistry, 2016, 291, 27170-27186.	3.4	6
17	Viroporins, Examples of the Two-Stage Membrane Protein Folding Model. Viruses, 2015, 7, 3462-3482.	3.3	16
18	Synthetic Toll-Like Receptor 4 (TLR4) and TLR7 Ligands as Influenza Virus Vaccine Adjuvants Induce Rapid, Sustained, and Broadly Protective Responses. Journal of Virology, 2015, 89, 3221-3235.	3.4	92

#	Article	IF	CITATIONS
19	Senataxin suppresses the antiviral transcriptional response and controls viral biogenesis. Nature Immunology, 2015, 16, 485-494.	14.5	50
20	The Tobacco mosaic virus Movement Protein Associates with but Does Not Integrate into Biological Membranes. Journal of Virology, 2014, 88, 3016-3026.	3.4	76
21	A small molecule multi-kinase inhibitor reduces influenza A virus replication by restricting viral RNA synthesis. Antiviral Research, 2013, 100, 29-37.	4.1	12
22	Charge Pair Interactions in Transmembrane Helices and Turn Propensity of the Connecting Sequence Promote Helical Hairpin Insertion. Journal of Molecular Biology, 2013, 425, 830-840.	4.2	30
23	Serum- and Glucocorticoid-Regulated Kinase 1 Is Required for Nuclear Export of the Ribonucleoprotein of Influenza A Virus. Journal of Virology, 2013, 87, 6020-6026.	3.4	20
24	A Sendai Virus-Derived RNA Agonist of RIG-I as a Virus Vaccine Adjuvant. Journal of Virology, 2013, 87, 1290-1300.	3.4	107
25	Adjuvants and Immunization Strategies to Induce Influenza Virus Hemagglutinin Stalk Antibodies. PLoS ONE, 2013, 8, e79194.	2.5	58
26	A Novel Small Molecule Inhibitor of Influenza A Viruses that Targets Polymerase Function and Indirectly Induces Interferon. PLoS Pathogens, 2012, 8, e1002668.	4.7	42
27	Identification of Small Molecules with Type I Interferon Inducing Properties by High-Throughput Screening. PLoS ONE, 2012, 7, e49049.	2.5	27
28	Residual Baculovirus in Insect Cell-Derived Influenza Virus-Like Particle Preparations Enhances Immunogenicity. PLoS ONE, 2012, 7, e51559.	2.5	56
29	Membrane Insertion and Topology of the Translocating Chain-Associating Membrane Protein (TRAM). Journal of Molecular Biology, 2011, 406, 571-582.	4.2	31
30	Membrane protein integration into the endoplasmic reticulum. FEBS Journal, 2011, 278, 3846-3858.	4.7	32
31	Membrane Integration of Poliovirus 2B Viroporin. Journal of Virology, 2011, 85, 11315-11324.	3.4	43
32	Membrane Insertion and Biogenesis of the <i>Turnip Crinkle Virus</i> p9 Movement Protein. Journal of Virology, 2010, 84, 5520-5527.	3.4	28
33	Plant Virus Cell-to-Cell Movement Is Not Dependent on the Transmembrane Disposition of Its Movement Protein. Journal of Virology, 2009, 83, 5535-5543.	3.4	49
34	Membrane topology of gp41 and amyloid precursor protein: Interfering transmembrane interactions as potential targets for HIV and Alzheimer treatment. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2132-2141.	2.6	11
35	Viral Membrane Protein Topology Is Dictated by Multiple Determinants in Its Sequence. Journal of Molecular Biology, 2009, 387, 113-128.	4.2	16
36	The Surfactant Peptide KL4 Sequence Is Inserted with a Transmembrane Orientation into the Endoplasmic Reticulum Membrane. Biophysical Journal, 2008, 95, L36-L38.	0.5	29

#	Article	lF	CITATION
37	Membrane insertion and topology of the p7B movement protein of Melon Necrotic Spot Virus (MNSV). Virology, 2007, 367, 348-357.	2.4	34
38	RNA-binding properties and membrane insertion of Melon necrotic spot virus (MNSV) double gene block movement proteins. Virology, 2006, 356, 57-67.	2.4	36