Dooshaye Moonshiram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6738179/publications.pdf

Version: 2024-02-01

394421 377865 36 1,184 19 34 g-index citations h-index papers 39 39 39 1905 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Deciphering the photophysical kinetics, electronic configurations and structural conformations of iridium–cobalt hydrogen evolution photocatalysts. Chemical Communications, 2022, 58, 8057-8060.	4.1	3
2	Structure and excited-state dynamics of dimeric copper(i) photosensitizers investigated by time-resolved X-ray and optical transient absorption spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 3656-3667.	2.8	4
3	Surface-Promoted Evolution of Ru-bda Coordination Oligomers Boosts the Efficiency of Water Oxidation Molecular Anodes. Journal of the American Chemical Society, 2021, 143, 11651-11661.	13.7	28
4	Characterization and reactivity study of non-heme high-valent iron–hydroxo complexes. Chemical Science, 2021, 12, 4418-4424.	7.4	12
5	Magnetic, Mechanically Interlocked Porphyrin–Carbon Nanotubes for Quantum Computation and Spintronics. Journal of the American Chemical Society, 2021, 143, 21286-21293.	13.7	12
6	Spectroscopic Characterisation of a Bioâ€Inspired Niâ€Based Proton Reduction Catalyst Bearing a Pentadentate N ₂ S ₃ Ligand with Improved Photocatalytic Activity. Chemistry - A European Journal, 2020, 26, 2859-2868.	3.3	12
7	Water oxidation electrocatalysis using ruthenium coordination oligomers adsorbed on multiwalled carbon nanotubes. Nature Chemistry, 2020, 12, 1060-1066.	13.6	54
8	Efficient Electrochemical Water Oxidation by a Trinuclear Ru(bda) Macrocycle Immobilized on Multiâ€Walled Carbon Nanotube Electrodes. Advanced Energy Materials, 2020, 10, 2002329.	19.5	20
9	Analysis of the Active Species Responsible for Water Oxidation Using a Pentanuclear Fe Complex. IScience, 2020, 23, 101378.	4.1	19
10	Redox Metal–Ligand Cooperativity Enables Robust and Efficient Water Oxidation Catalysis at Neutral pH with Macrocyclic Copper Complexes. Journal of the American Chemical Society, 2020, 142, 17434-17446.	13.7	59
11	Tracking the Lightâ€Induced Excitedâ€State Dynamics and Structural Configurations of an Extraordinarily Longâ€Lived Metastable State at Room Temperature. Chemistry - A European Journal, 2020, 26, 10801-10810.	3.3	4
12	The Coordination Behaviour of Cu I Photosensitizers Bearing Multidentate Ligands Investigated by Xâ€ray Absorption Spectroscopy. Chemistry - A European Journal, 2020, 26, 9527-9536.	3.3	17
13	Electrochemically and Photochemically Induced Hydrogen Evolution Catalysis with Cobalt Tetraazamacrocycles Occurs Through Different Pathways. ChemSusChem, 2020, 13, 2745-2752.	6.8	14
14	Elucidating the Nature of the Excited State of a Heteroleptic Copper Photosensitizer by using Timeâ€Resolved Xâ€ray Absorption Spectroscopy. Chemistry - A European Journal, 2018, 24, 6464-6472.	3.3	34
15	Dispersive soft x-ray absorption fine-structure spectroscopy in graphite with an attosecond pulse. Optica, 2018, 5, 502.	9.3	47
16	Elucidating light-induced charge accumulation in an artificial analogue of methane monooxygenase enzymes using time-resolved X-ray absorption spectroscopy. Chemical Communications, 2017, 53, 2725-2728.	4.1	5
17	Electronic π-Delocalization Boosts Catalytic Water Oxidation by Cu(II) Molecular Catalysts Heterogenized on Graphene Sheets. Journal of the American Chemical Society, 2017, 139, 12907-12910.	13.7	108
18	Hetero-site-specific X-ray pump-probe spectroscopy for femtosecond intramolecular dynamics. Nature Communications, 2016, 7, 11652.	12.8	70

#	Article	IF	Citations
19	Mechanistic Evaluation of a Nickel Proton Reduction Catalyst Using Time-Resolved X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 20049-20057.	3.1	21
20	Ultrafast x-ray-induced nuclear dynamics in diatomic molecules using femtosecond x-ray-pump–x-ray-probe spectroscopy. Physical Review A, 2016, 94, .	2.5	24
21	Tracking the Structural and Electronic Configurations of a Cobalt Proton Reduction Catalyst in Water. Journal of the American Chemical Society, 2016, 138, 10586-10596.	13.7	77
22	A Million Turnover Molecular Anode for Catalytic Water Oxidation. Angewandte Chemie, 2016, 128, 15608-15612.	2.0	21
23	A Million Turnover Molecular Anode for Catalytic Water Oxidation. Angewandte Chemie - International Edition, 2016, 55, 15382-15386.	13.8	90
24	Structural and Spectroscopic Characterization of Reaction Intermediates Involved in a Dinuclear Co–Hbpp Water Oxidation Catalyst. Journal of the American Chemical Society, 2016, 138, 15291-15294.	13.7	49
25	Uncovering the Role of Oxygen Atom Transfer in Ru-Based Catalytic Water Oxidation. Journal of the American Chemical Society, 2016, 138, 15605-15616.	13.7	52
26	EPR and X-Ray Spectroscopy Characterization of Reported Mono-Ruthenium Water Splitting Catalysts. Biophysical Journal, 2015, 108, 605a.	0.5	0
27	Studying the Structural and Electronic Configurations during Photocatalytic Activation of O2 at a Diiron(II) Complex. Biophysical Journal, 2015, 108, 605a.	0.5	O
28	Spectroscopic Analysis of Catalytic Water Oxidation by [Ru ^{II} (bpy)(tpy)H ₂ O] ²⁺ Suggests That Ru ^V â•⊙ Is Not a Rate-Limiting Intermediate. Journal of the American Chemical Society, 2014, 136, 11938-11945.	13.7	83
29	Structure and Electronic Configurations of the Intermediates of Water Oxidation in a Highly Active and Robust Molecular Ruthenium Catalyst. Biophysical Journal, 2013, 104, 531a.	0.5	O
30	Electronic Structure Assessment: Combined Density Functional Theory Calculations and Ru L2,3-Edge X-ray Absorption Near-Edge Spectroscopy of Water Oxidation Catalyst. Journal of Physical Chemistry C, 2013, 117, 18994-19001.	3.1	7
31	Experimental demonstration of radicaloid character in a Ru ^V =O intermediate in catalytic water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3765-3770.	7.1	77
32	Mechanism of Catalytic Water Oxidation by the Ruthenium Blue Dimer Catalyst: Comparative Study in D2O versus H2O. Materials, 2013, 6, 392-409.	2.9	30
33	Ru L2,3 XANES theoretical simulation with DFT: A test of the core-hole treatment. Solid State Communications, 2012, 152, 1880-1884.	1.9	9
34	Structure and Electronic Configurations of the Intermediates of Water Oxidation in Blue Ruthenium Dimer Catalysis. Journal of the American Chemical Society, 2012, 134, 4625-4636.	13.7	68
35	Density functional theory simulation of the L2,3 XANES spectra. JETP Letters, 2012, 95, 504-510.	1.4	3
36	Understanding the Electronic Structure of 4d Metal Complexes: From Molecular Spinors to L-Edge Spectra of a di-Ru Catalyst. Journal of the American Chemical Society, 2011, 133, 15786-15794.	13.7	50