Leticia Oliveira-Ferrer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6738045/publications.pdf Version: 2024-02-01

LETICIA OLIVEIDA-FEDDED

#	Article	IF	CITATIONS
1	Breast cancer brain metastases: biology and new clinical perspectives. Breast Cancer Research, 2016, 18, 8.	5.0	226
2	Role of protein glycosylation in cancer metastasis. Seminars in Cancer Biology, 2017, 44, 141-152.	9.6	208
3	Exosomal micro <scp>RNA</scp> s as tumor markers in epithelial ovarian cancer. Molecular Oncology, 2018, 12, 1935-1948.	4.6	125
4	Cilengitide induces cellular detachment and apoptosis in endothelial and glioma cells mediated by inhibition of FAK/src/AKT pathway. Journal of Experimental and Clinical Cancer Research, 2008, 27, 86.	8.6	89
5	Interplay of IncRNA H19/miRâ€675 and IncRNA NEAT1/miRâ€204 in breast cancer. Molecular Oncology, 2019, 13, 1137-1149.	4.6	84
6	Prognostic relevance of glycosylation-associated genes in breast cancer. Breast Cancer Research and Treatment, 2014, 145, 295-305.	2.5	77
7	Different signatures of miR-16, miR-30b and miR-93 in exosomes from breast cancer and DCIS patients. Scientific Reports, 2018, 8, 12974.	3.3	59
8	Targeting the TIGIT-PVR immune checkpoint axis as novel therapeutic option in breast cancer. Oncolmmunology, 2019, 8, e1674605.	4.6	59
9	Reduced mannosidase MAN1A1 expression leads to aberrant N-glycosylation and impaired survival in breast cancer. British Journal of Cancer, 2018, 118, 847-856.	6.4	49
10	Prognostic role of the sialyltransferase ST6GAL1 in ovarian cancer. Glycobiology, 2018, 28, 898-903.	2.5	37
11	ALCAM contributes to brain metastasis formation in non-small-cell lung cancer through interaction with the vascular endothelium. Neuro-Oncology, 2020, 22, 955-966.	1.2	36
12	Clinical relevance of cytoskeleton associated proteins for ovarian cancer. Journal of Cancer Research and Clinical Oncology, 2018, 144, 2195-2205.	2.5	35
13	E-Cadherin fragments as potential mediators for peritoneal metastasis in advanced epithelial ovarian cancer. British Journal of Cancer, 2016, 114, 213-220.	6.4	32
14	Relevance of βGal–βGalNAc-containing glycans and the enzymes involved in their synthesis for invasion and survival in breast cancer patients. Breast Cancer Research and Treatment, 2015, 151, 515-528.	2.5	28
15	Prognostic relevance of the Golgi mannosidase MAN1A1 in ovarian cancer: impact of N-glycosylation on tumour cell aggregation. British Journal of Cancer, 2019, 121, 944-953.	6.4	27
16	Selectin-independent adhesion during ovarian cancer metastasis. Biochimie, 2017, 142, 197-206.	2.6	25
17	Tubulin Tyrosine Ligase Like 4 (TTLL4) overexpression in breast cancer cells is associated with brain metastasis and alters exosome biogenesis. Journal of Experimental and Clinical Cancer Research, 2020, 39, 205.	8.6	24
18	Strong fascin expression promotes metastasis independent of its F-actin bundling activity. Oncotarget, 2017, 8, 110077-110091.	1.8	23

Leticia Oliveira-Ferrer

#	Article	IF	CITATIONS
19	Molecular Mechanisms Associated with Brain Metastases in HER2-Positive and Triple Negative Breast Cancers. Cancers, 2021, 13, 4137.	3.7	22
20	Immature O-glycans recognized by the macrophage glycoreceptor CLEC10A (MGL) are induced by 4-hydroxy-tamoxifen, oxidative stress and DNA-damage in breast cancer cells. Cell Communication and Signaling, 2019, 17, 107.	6.5	21
21	Genomic characterization of vulvar squamous cell carcinoma. Gynecologic Oncology, 2020, 158, 547-554.	1.4	21
22	p53 and p16 expression profiles in vulvar cancer: a translational analysis by the Arbeitsgemeinschaft Gynäologische Onkologie Chemo and Radiotherapy in Epithelial Vulvar Cancer study group. American Journal of Obstetrics and Gynecology, 2021, 224, 595.e1-595.e11.	1.3	21
23	Immunoglobulin G Subclass-Specific Glycosylation Changes in Primary Epithelial Ovarian Cancer. Frontiers in Immunology, 2020, 11, 654.	4.8	20
24	Loss of <i>BRCA1</i> promotor hypermethylation in recurrent high-grade ovarian cancer. Oncotarget, 2017, 8, 83063-83074.	1.8	20
25	Tissue-Specific Expression of TIGIT, PD-1, TIM-3, and CD39 by γδT Cells in Ovarian Cancer. Cells, 2022, 11, 964.	4.1	19
26	VEGF-C expression attributes the risk for lymphatic metastases to ovarian cancer patients. Oncotarget, 2017, 8, 43218-43227.	1.8	18
27	Clinical relevance of H-RAS, K-RAS, and N-RAS mRNA expression in primary breast cancer patients. Breast Cancer Research and Treatment, 2020, 179, 403-414.	2.5	16
28	Mechanisms of Tumor-Lymphatic Interactions in Invasive Breast and Prostate Carcinoma. International Journal of Molecular Sciences, 2020, 21, 602.	4.1	15
29	Molecular characteristics and tumorigenicity of ascitesâ€derived tumor cells: mitochondrial oxidative phosphorylation as a novel therapy target in ovarian cancer. Molecular Oncology, 2021, 15, 3578-3595.	4.6	14
30	Combination therapy targeting integrins reduces glioblastoma tumor growth through antiangiogenic and direct antitumor activity and leads to activation of the pro-proliferative prolactin pathway. Molecular Cancer, 2013, 12, 144.	19.2	12
31	Role of HYAL1 expression in primary breast cancer in the formation of brain metastases. Breast Cancer Research and Treatment, 2017, 162, 427-438.	2.5	10
32	CAMK2N1/RUNX3 methylation is an independent prognostic biomarker for progression-free and overall survival of platinum-sensitive epithelial ovarian cancer patients. Clinical Epigenetics, 2021, 13, 15.	4.1	10
33	Prognostic Impact of CEACAM1 in Node-Negative Ovarian Cancer Patients. Disease Markers, 2018, 2018, 1-10.	1.3	8
34	<i>BRCA1</i> promoter hypermethylation on circulating tumor DNA correlates with improved survival of patients with ovarian cancer. Molecular Oncology, 2021, 15, 3615-3625.	4.6	8
35	Insights into the Steps of Breast Cancer–Brain Metastases Development: Tumor Cell Interactions with the Blood–Brain Barrier. International Journal of Molecular Sciences, 2022, 23, 1900.	4.1	8
36	Cadherin-11 mRNA and protein expression in ovarian tumors of different malignancy: No evidence of oncogenic or tumor-suppressive function. Molecular and Clinical Oncology, 2015, 3, 1067-1072.	1.0	6

#	Article	IF	CITATIONS
37	Circulating Cellular Communication Network Factor 1 Protein as a Sensitive Liquid Biopsy Marker for Early Detection of Breast Cancer. Clinical Chemistry, 2022, 68, 344-353.	3.2	5
38	The metabolite 3-hydroxiglutaric acid effectively reduces glioblastoma growth in vivo by affecting the structural integrity of tumor vasculature. Cancer Letters, 2012, 326, 161-167.	7.2	3
39	Transcriptome Analysis in Vulvar Squamous Cell Cancer. Cancers, 2021, 13, 6372.	3.7	3
40	No need for NMDA receptor antibody screening in neurologically asymptomatic patients with ovarian teratomas. Journal of Neurology, 2018, 265, 431-432.	3.6	2