
Elvira Alvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6737751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Storage and Utilization of Glycogen by Mouse Liver during Adaptation to Nutritional Changes Are GLP-1 and PASK Dependent. Nutrients, 2021, 13, 2552.	4.1	5
2	Preventing Oxidative Stress in the Liver: An Opportunity for GLP-1 and/or PASK. Antioxidants, 2021, 10, 2028.	5.1	6
3	PAS Kinase: A Nutrient and Energy Sensor "Master Key―in the Response to Fasting/Feeding Conditions. Frontiers in Endocrinology, 2020, 11, 594053.	3.5	5
4	PAS kinase deficiency reduces aging effects in mice. Aging, 2020, 12, 2275-2301.	3.1	7
5	High-fat diet alters PAS kinase regulation by fasting and feeding in liver. Journal of Nutritional Biochemistry, 2018, 57, 14-25.	4.2	15
6	Pas Kinase Deficiency Triggers Antioxidant Mechanisms in the Liver. Scientific Reports, 2018, 8, 13810.	3.3	13
7	PAS Kinase deficiency alters the glucokinase function and hepatic metabolism. Scientific Reports, 2018, 8, 11091.	3.3	15
8	PAS Kinase Is a Nutrient and Energy Sensor in Hypothalamic Areas Required for the Normal Function of AMPK and mTOR/S6K1. Molecular Neurobiology, 2014, 50, 314-326.	4.0	21
9	PAS Kinase as a Nutrient Sensor in Neuroblastoma and Hypothalamic Cells Required for the Normal Expression and Activity of Other Cellular Nutrient and Energy Sensors. Molecular Neurobiology, 2013, 48, 904-920.	4.0	17
10	Insulin-Receptor Substrate-2 (IRS-2) Is Required for Maintaining Glucokinase and Glucokinase Regulatory Protein Expression in Mouse Liver. PLoS ONE, 2013, 8, e58797.	2.5	12
11	Glucagon-Like Peptide 1 (GLP-1) Can Reverse AMP-Activated Protein Kinase (AMPK) and S6 Kinase (P70S6K) Activities Induced by Fluctuations in Glucose Levels in Hypothalamic Areas Involved in Feeding Behaviour. Molecular Neurobiology, 2012, 45, 348-361.	4.0	38
12	Glucokinase as a Glucose Sensor in Hypothalamus - Regulation by Orexigenic and Anorexigenic Peptides. , 2011, , .		0
13	Glucokinase and Glucokinase Regulatory Proteins are Functionally Coexpressed before Birth in the Rat Brain. Journal of Neuroendocrinology, 2009, 21, 973-981.	2.6	15
14	Leptin but not neuropeptide Y up-regulated glucagon-like peptide 1 receptor expression in GT1-7 cells and rat hypothalamic slices. Metabolism: Clinical and Experimental, 2008, 57, 40-48.	3.4	24
15	The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem. Journal of Neurochemistry, 2005, 92, 798-806.	3.9	241
16	Substitution of the cysteine 438 residue in the cytoplasmic tail of the glucagon-like peptide-1 receptor alters signal transduction activity. Journal of Endocrinology, 2005, 185, 35-44.	2.6	17
17	The cytoplasmic domain close to the transmembrane region of the glucagon-like peptide-1 receptor contains sequence elements that regulate agonist-dependent internalisation. Journal of Endocrinology, 2005, 186, 221-231.	2.6	18
18	Expression of glucose transporter isoform GLUT-2 and glucokinase genes in human brain. Journal of Neurochemistry, 2004, 88, 1203-1210.	3.9	59

Elvira Alvarez

#	Article	IF	CITATIONS
19	Evidence that glucokinase regulatory protein is expressed and interacts with glucokinase in rat brain. Journal of Neurochemistry, 2002, 80, 45-53.	3.9	68
20	Expression of glucagon-like peptide-1 (GLP-1) receptor and the effect of GLP-1-(7-36) amide on insulin release by pancreatic islets during rat ontogenic development. FEBS Journal, 2001, 268, 514-520.	0.2	9
21	Peripheral versus central effects of glucagon-like peptide-1 receptor agonists on satiety and body weight loss in Zucker obese rats. Metabolism: Clinical and Experimental, 2000, 49, 709-717.	3.4	144
22	Functional Glucokinase Isoforms Are Expressed in Rat Brain. Journal of Neurochemistry, 2000, 74, 1848-1857.	3.9	86
23	Coexpression of Glucagon-Like Peptide-1 (GLP-1) Receptor, Vasopressin, and Oxytocin mRNAs in Neurons of the Rat Hypothalamic Supraoptic and Paraventricular Nuclei. Journal of Neurochemistry, 1999, 72, 10-16.	3.9	37
24	Increased glucagon-like peptide-1 receptor expression in glia after mechanical lesion of the rat brain. Neuropeptides, 1999, 33, 212-215.	2.2	52
25	Glucagon-like peptide-1 (7–36) amide as a novel neuropeptide. Molecular Neurobiology, 1998, 18, 157-173.	4.0	29
26	Expression of the Glucagon‣ike Peptide‣ Receptor Gene in Rat Brain. Journal of Neurochemistry, 1996, 66, 920-927.	3.9	160
27	Colocalization of Clucagonâ€Like Peptideâ€1 (GLPâ€1) Receptors, Clucose Transporter GLUTâ€2, and Glucokinase mRNAs in Rat Hypothalamic Cells: Evidence for a Role of GLPâ€1 Receptor Agonists as an Inhibitory Signal for Food and Water Intake. Journal of Neurochemistry, 1996, 67, 1982-1991.	3.9	205
28	Pro-Leu-Ser/Thr-Pro is a consensus primary sequence for substrate protein phosphorylation. Characterization of the phosphorylation of c-myc and c-jun proteins by an epidermal growth factor receptor threonine 669 protein kinase. Journal of Biological Chemistry, 1991, 266, 15277-85.	3.4	378
29	A point mutation in the cytoplasmic domain of the transferrin receptor inhibits endocytosis. Biochemical Journal, 1990, 267, 31-35.	3.7	41
30	Inhibition of the receptor-mediated endocytosis of diferric transferrin is associated with the covalent modification of the transferrin receptor with palmitic acid Journal of Biological Chemistry, 1990, 265, 16644-16655.	3.4	127
31	Inhibition of the receptor-mediated endocytosis of diferric transferrin is associated with the covalent modification of the transferrin receptor with palmitic acid. Journal of Biological Chemistry, 1990, 265, 16644-55.	3.4	94
32	Biochemical and Ultrastructural Approaches to the Onset of the Pineal Melatonin Rhythm in the Rat. Neuroendocrinology, 1989, 50, 500-505.	2.5	15
33	Intermolecular disulfide bonds are not required for the expression of the dimeric state and functional activity of the transferrin receptor EMBO Journal, 1989, 8, 2231-2240.	7.8	36
34	Effect of Pinealectomy on Liver Insulin and Glucagon Receptor Concentrations in the Rat. Journal of Pineal Research, 1989, 6, 77-88.	7.4	45
35	Presence of Melatonin in the Umbilical Cord Blood of Full-Term Human Newborns. Journal of Pineal Research, 1989, 6, 135-140.	7.4	10
36	Effect of Pinealectomy and of Diabetes on Liver Insulin and Glucagon Receptor Concentrations in the Rat. Journal of Pineal Research, 1989, 6, 295-306.	7.4	27

Elvira Alvarez

#	Article	IF	CITATIONS
37	Intermolecular disulfide bonds are not required for the expression of the dimeric state and functional activity of the transferrin receptor. EMBO Journal, 1989, 8, 2231-40.	7.8	17
38	Lack of Insulin Effect on its Own Receptors in Fetal Rat Hepatocytes. Hormone and Metabolic Research, 1987, 19, 458-463.	1.5	12
39	Characterization of glucacon receptors in Golgi fractions of fetal rat liver. FEBS Letters, 1987, 222, 256-260.	2.8	1
40	Direct evidence that insulin does not down-regulate its own receptors in circulating monocytes of human newborns. Diabetologia, 1987, 30, 820-2.	6.3	2
41	Delayed appearance of liver growth hormone binding sites and of growth hormone-induced somatomedin production during rat development. Biochemical and Biophysical Research Communications, 1986, 136, 38-44.	2.1	11
42	Characterization of Insulin Receptors in Liver Membranes and Isolated Hepatocytes during Rat Ontogenic Development. Hormone and Metabolic Research, 1986, 18, 666-671.	1.5	4
43	Glucagon-like peptide-1 does not have a role in hepatic carbohydrate metabolism. Diabetologia, 1985, 28, 920-921.	6.3	46
44	Role of Nutrient and Energy Sensors in the Development of Type 2 Diabetes. , 0, , .		0