Claude Libert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/673594/publications.pdf

Version: 2024-02-01

106 papers 7,842 citations

45 h-index 84 g-index

107 all docs

 $\begin{array}{c} 107 \\ \\ \text{docs citations} \end{array}$

107 times ranked 13247 citing authors

#	Article	IF	CITATIONS
1	Coding variants in mouse and rat model organisms: mousepost and ratpost. Mammalian Genome, 2022, 33, 81-87.	2.2	2
2	Reprogramming of glucocorticoid receptor function by hypoxia. EMBO Reports, 2022, 23, e53083.	4.5	7
3	Point mutation I634A in the glucocorticoid receptor causes embryonic lethality by reduced ligand binding. Journal of Biological Chemistry, 2022, 298, 101574.	3.4	6
4	miR-511 Deficiency Protects Mice from Experimental Colitis by Reducing TLR3 and TLR4 Responses via WD Repeat and FYVE-Domain-Containing Protein 1. Cells, 2022, 11, 58.	4.1	4
5	Dimerization of the Glucocorticoid Receptor and Its Importance in (Patho)physiology: A Primer. Cells, 2022, 11, 683.	4.1	13
6	Sepsis: a failing starvation response. Trends in Endocrinology and Metabolism, 2022, 33, 292-304.	7.1	34
7	Engineering a highly sensitive biosensor for abscisic acid in mammalian cells. FEBS Letters, 2022, 596, 2576-2590.	2.8	2
8	Ratpost: a searchable database of protein-inactivating sequence variations in 40 sequenced rat-inbred strains. Mammalian Genome, 2021, 32, 1-11.	2.2	5
9	Macrophage miR-210 induction and metabolic reprogramming in response to pathogen interaction boost life-threatening inflammation. Science Advances, 2021, 7, .	10.3	26
10	ZBTB32 performs crosstalk with the glucocorticoid receptor and is crucial in glucocorticoid responses to starvation. IScience, 2021, 24, 102790.	4.1	1
11	Bidirectional Crosstalk Between Hypoxia Inducible Factors and Glucocorticoid Signalling in Health and Disease. Frontiers in Immunology, 2021, 12, 684085.	4.8	13
12	Combined glucocorticoid resistance and hyperlactatemia contributes to lethal shock in sepsis. Cell Metabolism, 2021, 33, 1763-1776.e5.	16.2	28
13	Turning a pathogen protein into a therapeutic tool for sepsis. EMBO Molecular Medicine, 2021, 13, e13589.	6.9	2
14	The androgen receptor depends on ligandâ€binding domain dimerization for transcriptional activation. EMBO Reports, 2021, 22, e52764.	4.5	20
15	Glucocorticoids in Sepsis: To Be or Not to Be. Frontiers in Immunology, 2020, 11, 1318.	4.8	71
16	An extracellular microRNA can rescue lives in sepsis. EMBO Reports, 2020, 21, e49193.	4.5	2
17	GILZ in sepsis: "Poor is the pupil who does not surpass his master― European Journal of Immunology, 2020, 50, 490-493.	2.9	5
18	Phytohormones: Multifunctional nutraceuticals against metabolic syndrome and comorbid diseases. Biochemical Pharmacology, 2020, 175, 113866.	4.4	15

#	Article	IF	Citations
19	Hypoxiaâ€inducible factors in metabolic reprogramming during sepsis. FEBS Journal, 2020, 287, 1478-1495.	4.7	27
20	Potential of glucocorticoids to treat intestinal inflammation during sepsis. Current Opinion in Pharmacology, 2020, 53, 1-7.	3.5	7
21	Hepatic PPARα function and lipid metabolic pathways are dysregulated in polymicrobial sepsis. EMBO Molecular Medicine, 2020, 12, e11319.	6.9	34
22	Taking the STING Out of Sepsis?. Cell Host and Microbe, 2020, 27, 491-493.	11.0	1
23	Glucocorticoids limit lipopolysaccharideâ€induced lethal inflammation by a double control system. EMBO Reports, 2020, 21, e49762.	4.5	8
24	Zinc inhibits lethal inflammatory shock by preventing microbeâ€induced interferon signature in intestinal epithelium. EMBO Molecular Medicine, 2020, 12, e11917.	6.9	14
25	Mechanisms Underlying the Functional Cooperation Between PPARα and GRα to Attenuate Inflammatory Responses. Frontiers in Immunology, 2019, 10, 1769.	4.8	12
26	Do people living with HIV experience greater age advancement than their HIV-negative counterparts?. Aids, 2019, 33, 259-268.	2.2	93
27	A General Introduction to Glucocorticoid Biology. Frontiers in Immunology, 2019, 10, 1545.	4.8	323
28	TNF- $\hat{l}\pm$ inhibits glucocorticoid receptor-induced gene expression by reshaping the GR nuclear cofactor profile. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12942-12951.	7.1	41
29	Overexpression of Gilz Protects Mice Against Lethal Septic Peritonitis. Shock, 2019, 52, 208-214.	2.1	24
30	Cognitive dysfunction in mice lacking proper glucocorticoid receptor dimerization. PLoS ONE, 2019, 14, e0226753.	2.5	10
31	A Study of Cecal Ligation and Puncture-Induced Sepsis in Tissue-Specific Tumor Necrosis Factor Receptor 1-Deficient Mice. Frontiers in Immunology, 2019, 10, 2574.	4.8	16
32	The E3 ubiquitin ligases HOIP and cIAP1 are recruited to the TNFR2 signaling complex and mediate TNFR2-induced canonical NF-κB signaling. Biochemical Pharmacology, 2018, 153, 292-298.	4.4	27
33	Mechanistic insights into the protective impact of zinc on sepsis. Cytokine and Growth Factor Reviews, 2018, 39, 92-101.	7.2	27
34	How Good Roommates Can Protect against Microbial Sepsis. Cell Host and Microbe, 2018, 23, 283-285.	11.0	7
35	Genetic mapping of species differences via in vitro crosses in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3680-3685.	7.1	9
36	Alterations of the serum N-glycan profile in female patients with Major Depressive Disorder. Journal of Affective Disorders, 2018, 234, 139-147.	4.1	22

#	Article	IF	CITATIONS
37	Therapeutic Mechanisms of Glucocorticoids. Trends in Endocrinology and Metabolism, 2018, 29, 42-54.	7.1	334
38	Should we target TNF receptors in the intestinal epithelium with glucocorticoids during systemic inflammation?. Expert Opinion on Therapeutic Targets, 2018, 22, 1029-1037.	3.4	4
39	A screening assay for Selective Dimerizing Glucocorticoid Receptor Agonists and Modulators (SEDIGRAM) that are effective against acute inflammation. Scientific Reports, 2018, 8, 12894.	3.3	17
40	Easy Access to and Applications of the Sequences of All Protein-Coding Genes of All Sequenced Mouse Strains. Trends in Genetics, 2018, 34, 899-902.	6.7	1
41	The autophagy receptor SQSTM1/p62 mediates anti-inflammatory actions of the selective NR3C1/glucocorticoid receptor modulator compound A (CpdA) in macrophages. Autophagy, 2018, 14, 2049-2064.	9.1	28
42	Learning lessons in sepsis from the children. Molecular Systems Biology, 2018, 14, e8335.	7.2	2
43	Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last?. EMBO Molecular Medicine, 2018, 10, .	6.9	164
44	A New Venue of TNF Targeting. International Journal of Molecular Sciences, 2018, 19, 1442.	4.1	96
45	Glucocorticoid receptor dimers control intestinal STAT1 and TNF-induced inflammation in mice. Journal of Clinical Investigation, 2018, 128, 3265-3279.	8.2	52
46	Glucocorticoid resistance as a major drive in sepsis pathology. Cytokine and Growth Factor Reviews, 2017, 35, 85-96.	7.2	57
47	Airway Epithelial Cells Are Crucial Targets of Glucocorticoids in a Mouse Model of Allergic Asthma. Journal of Immunology, 2017, 199, 48-61.	0.8	44
48	Complete overview of protein-inactivating sequence variations in 36 sequenced mouse inbred strains. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9158-9163.	7.1	37
49	The nature of the GRE influences the screening for GR-activity enhancing modulators. PLoS ONE, 2017, 12, e0181101.	2.5	8
50	The Interactome of the Glucocorticoid Receptor and Its Influence on the Actions of Glucocorticoids in Combatting Inflammatory and Infectious Diseases. Microbiology and Molecular Biology Reviews, 2016, 80, 495-522.	6.6	146
51	Nanobodies as therapeutics: big opportunities for small antibodies. Drug Discovery Today, 2016, 21, 1076-1113.	6.4	335
52	Efficient analysis of mouse genome sequences reveal many nonsense variants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5670-5675.	7.1	5
53	Identification of a novel mechanism of blood–brain communication during peripheral inflammation via choroid plexusâ€derived extracellular vesicles. EMBO Molecular Medicine, 2016, 8, 1162-1183.	6.9	259
54	Chromatin recruitment of activated AMPK drives fasting response genes co-controlled by GR and PPARα. Nucleic Acids Research, 2016, 44, 10539-10553.	14.5	56

#	Article	IF	CITATIONS
55	Caloric restriction: beneficial effects on brain aging and Alzheimer's disease. Mammalian Genome, 2016, 27, 300-319.	2.2	82
56	Preeclampsia transforms membrane N-glycome in human placenta. Experimental and Molecular Pathology, 2016, 100, 26-30.	2.1	17
57	Activation of the Glucocorticoid Receptor in Acute Inflammation: the SEDIGRAM Concept. Trends in Pharmacological Sciences, 2016, 37, 4-16.	8.7	62
58	The choroid plexus-cerebrospinal fluid interface in Alzheimer′s disease: more than just a barrier. Neural Regeneration Research, 2016, 11, 534.	3.0	74
59	Predominant contribution of <i>cisâ€</i> regulatory divergence in the evolution of mouse alternative splicing. Molecular Systems Biology, 2015, 11, 816.	7.2	34
60	N-Glycomic Changes in Serum Proteins in Type 2 Diabetes Mellitus Correlate with Complications and with Metabolic Syndrome Parameters. PLoS ONE, 2015, 10, e0119983.	2.5	81
61	Decreased TNF Levels and Improved Retinal Ganglion Cell Survival in MMP-2 Null Mice Suggest a Role for MMP-2 as TNF Sheddase. Mediators of Inflammation, 2015, 2015, 1-13.	3.0	17
62	Friends or Foes: Matrix Metalloproteinases and Their Multifaceted Roles in Neurodegenerative Diseases. Mediators of Inflammation, 2015, 2015, 1-27.	3.0	154
63	Nâ€glycome Profile Levels Relate to Silent Brain Infarcts in a Cohort of Hypertensives. Journal of the American Heart Association, 2015, 4, .	3.7	3
64	Generation and Characterization of Small Single Domain Antibodies Inhibiting Human Tumor Necrosis Factor Receptor 1. Journal of Biological Chemistry, 2015, 290, 4022-4037.	3 . 4	63
65	Clinical implications of leukocyte infiltration at the choroid plexus in (neuro)inflammatory disorders. Drug Discovery Today, 2015, 20, 928-941.	6.4	52
66	Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1. Nature Communications, 2015, 6, 7796.	12.8	131
67	Passenger Mutations Confound Interpretation of All Genetically Modified Congenic Mice. Immunity, 2015, 43, 200-209.	14.3	156
68	Glucocorticoidâ€induced microRNAâ€511 protects against <scp>TNF</scp> by downâ€regulating <scp>TNFR</scp> 1. EMBO Molecular Medicine, 2015, 7, 1004-1017.	6.9	47
69	DUSP3 Genetic Deletion Confers M2-like Macrophage–Dependent Tolerance to Septic Shock. Journal of Immunology, 2015, 194, 4951-4962.	0.8	28
70	Dual Inhibition of TNFR1 and IFNAR1 in Imiquimod-Induced Psoriasiform Skin Inflammation in Mice. Journal of Immunology, 2015, 194, 5094-5102.	0.8	40
71	Selective glucocorticoid receptor modulation: New directions with non-steroidal scaffolds. , 2015, 152, 28-41.		172
72	Protein modification and maintenance systems as biomarkers of ageing. Mechanisms of Ageing and Development, 2015, 151, 71-84.	4.6	45

#	Article	IF	Citations
73	Therapeutic implications of the choroid plexus–cerebrospinal fluid interface in neuropsychiatric disorders. Brain, Behavior, and Immunity, 2015, 50, 1-13.	4.1	29
74	Amyloid \hat{I}^2 Oligomers Disrupt Bloodâ \in "CSF Barrier Integrity by Activating Matrix Metalloproteinases. Journal of Neuroscience, 2015, 35, 12766-12778.	3.6	140
75	An inflammatory triangle in psoriasis: TNF, type I IFNs and IL-17. Cytokine and Growth Factor Reviews, 2015, 26, 25-33.	7.2	149
76	Regulation and dysregulation of tumor necrosis factor receptor-1. Cytokine and Growth Factor Reviews, 2014, 25, 285-300.	7.2	66
77	The N-glycan profile of placental membrane glycoproteins alters during gestation and aging. Mechanisms of Ageing and Development, 2014, 138, 1-9.	4.6	20
78	Pharmacological Inhibition of Type I Interferon Signaling Protects Mice Against Lethal Sepsis. Journal of Infectious Diseases, 2014, 209, 960-970.	4.0	50
79	Dominance of the strongest: Inflammatory cytokines versus glucocorticoids. Cytokine and Growth Factor Reviews, 2014, 25, 21-33.	7.2	62
80	Is there new hope for therapeutic matrix metalloproteinase inhibition?. Nature Reviews Drug Discovery, 2014, 13, 904-927.	46.4	631
81	Choose your models wisely: How different murine bone marrow-derived dendritic cell protocols influence the success of nanoparticulate vaccines in vitro. Journal of Controlled Release, 2014, 195, 138-146.	9.9	12
82	Comprehensive Overview of the Structure and Regulation of the Glucocorticoid Receptor. Endocrine Reviews, 2014, 35, 671-693.	20.1	203
83	How Steroids Steer T Cells. Cell Reports, 2014, 7, 938-939.	6.4	53
84	LPS resistance of SPRET/Ei mice is mediated by Gilz, encoded by the <i>Tsc22d3</i> gene on the X chromosome. EMBO Molecular Medicine, 2013, 5, 456-470.	6.9	69
85	How glucocorticoid receptors modulate the activity of other transcription factors: A scope beyond tethering. Molecular and Cellular Endocrinology, 2013, 380, 41-54.	3.2	341
86	New Insights into the Anti-inflammatory Mechanisms of Glucocorticoids: An Emerging Role for Glucocorticoid-Receptor-Mediated Transactivation. Endocrinology, 2013, 154, 993-1007.	2.8	246
87	Safe TNF-based antitumor therapy following p55TNFR reduction in intestinal epithelium. Journal of Clinical Investigation, 2013, 123, 2590-2603.	8.2	64
88	Glucocorticoid receptor dimerization is required for survival in septic shock ⟨i>via⟨ i> suppression of interleukinâ€1 in macrophages. FASEB Journal, 2012, 26, 722-729.	0.5	135
89	Modulation of Dendritic Cells by Lipid Grafted Polyelectrolyte Microcapsules. Advanced Functional Materials, 2012, 22, 4236-4243.	14.9	9
90	On the Trail of the Glucocorticoid Receptor: Into the Nucleus and Back. Traffic, 2012, 13, 364-374.	2.7	177

#	Article	IF	CITATIONS
91	Glucocorticoid receptor dimerization induces MKP1 to protect against TNF-induced inflammation. Journal of Clinical Investigation, 2012, 122, 2130-2140.	8.2	123
92	Treatment of TNF mediated diseases by selective inhibition of soluble TNF or TNFR1. Cytokine and Growth Factor Reviews, 2011, 22, 311-319.	7.2	130
93	Cecal ligation and puncture: the gold standard model for polymicrobial sepsis?. Trends in Microbiology, 2011, 19, 198-208.	7.7	516
94	Tumor Necrosis Factor Inhibits Glucocorticoid Receptor Function in Mice. Journal of Biological Chemistry, 2011, 286, 26555-26567.	3.4	61
95	Increased Glucocorticoid Receptor Expression and Activity Mediate the LPS Resistance of SPRET/EI Mice. Journal of Biological Chemistry, 2010, 285, 31073-31086.	3.4	27
96	Mx1 causes resistance against influenza A viruses in the Mus spretus-derived inbred mouse strain SPRET/Ei. Cytokine, 2008, 42, 62-70.	3.2	18
97	Tumor necrosis factor alpha mediates the lethal hepatotoxic effects of poly(I:C) in d-galactosamine-sensitized mice. Cytokine, 2008, 42, 55-61.	3.2	47
98	Protection of Zinc against Tumor Necrosis Factor–Induced Lethal Inflammation Depends on Heat Shock Protein 70 and Allows Safe Antitumor Therapy. Cancer Research, 2007, 67, 7301-7307.	0.9	35
99	A fully dissociated compound of plant origin for inflammatory gene repression. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15827-15832.	7.1	245
100	A Mediator Role For Metallothionein in Tumor Necrosis Factor–induced Lethal Shock. Journal of Experimental Medicine, 2001, 194, 1617-1624.	8.5	47
101	High-level constitutive expression of alpha 1-acid glycoprotein and lack of protection against tumor necrosis factor-induced lethal shock in transgenic mice. Transgenic Research, 1998, 7, 429-435.	2.4	15
102	Mechanisms of sensitization by infections towards tumour necrosis factor induced sirs. Intensive Care Medicine, 1996, 22, S28-S28.	8.2	0
103	Response of interleukin-6-deficient mice to tumor necrosis factor-induced metabolic changes and lethality. European Journal of Immunology, 1994, 24, 2237-2242.	2.9	61
104	Limited involvement of interleukin-6 in the pathogenesis of lethal septic shock as revealed by the effect of monoclonal antibodies against interleukin-6 or its receptor in various murine models. European Journal of Immunology, 1992, 22, 2625-2630.	2.9	94
105	The Influence of Modulating Substances on Tumor Necrosis Factor and Interleukin-6 Levels After Injection of Murine Tumor Necrosis Factor or Lipopolysaccharide in Mice. Journal of Immunotherapy, 1991, 10, 227-235.	2.4	33
106	Induction of interleukin 6 by human and murine recombinant interleukin 1 in mice. European Journal of Immunology, 1990, 20, 691-694.	2.9	72