Adrian Leuchtmann List of Publications by Year in descending order Source: https://exaly.com/author-pdf/6735696/publications.pdf Version: 2024-02-01 96 papers 5,390 citations 37 h-index 94433 71 g-index 97 all docs 97 docs citations 97 times ranked 2809 citing authors | # | Article | IF | CITATIONS | |----|--|-------------------|-----------------------| | 1 | SYMBIOSES OF GRASSES WITH SEEDBORNE FUNGAL ENDOPHYTES. Annual Review of Plant Biology, 2004, 55, 315-340. | 18.7 | 759 | | 2 | Plant-Symbiotic Fungi as Chemical Engineers: Multi-Genome Analysis of the Clavicipitaceae Reveals Dynamics of Alkaloid Loci. PLoS Genetics, 2013, 9, e1003323. | 3.5 | 344 | | 3 | Nomenclatural realignment of <i>Neotyphodium </i> species with genus <i>Epichloë</i> . Mycologia, 2014, 106, 202-215. | 1.9 | 340 | | 4 | Taxonomy of Acremonium endophytes of tall fescue (Festuca arundinacea), meadow fescue (F.) Tj ETQq0 0 0 rg | BT /Overlo
2.5 | ck 10 Tf 50 62
214 | | 5 | Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses. Molecular Ecology, 2004, 13, 1455-1467. | 3.9 | 208 | | 6 | Systematics, distribution, and host specificity of grass endophytes. Natural Toxins, 1993, 1, 150-162. | 1.0 | 201 | | 7 | Coevolution by Common Descent of Fungal Symbionts (Epichloe spp.) and Grass Hosts. Molecular Biology and Evolution, 1997, 14, 133-143. | 8.9 | 166 | | 8 | Sexual Compatibility and Taxonomy of a New Species of Epichloe Symbiotic with Fine Fescue Grasses. Mycologia, 1994, 86, 802. | 1.9 | 138 | | 9 | Title is missing!. Journal of Chemical Ecology, 2000, 26, 1025-1036. | 1.8 | 134 | | 10 | Sexual compatibility and taxonomy of a new species of Epichlo \tilde{A} « symbiotic with fine fescue grasses. Mycologia, 1994, 86, 802-812. | 1.9 | 121 | | 11 | Currencies of Mutualisms: Sources of Alkaloid Genes in Vertically Transmitted Epichloae. Toxins, 2013, 5, 1064-1088. | 3.4 | 109 | | 12 | lsozyme Variation in the <i>Acremonium/Epichloë</i> Fungal Endophyte Complex. Phytopathology, 1990, 80, 1133. | 2.2 | 101 | | 13 | Mating compatibility and phylogenetic relationships among two new species of Epichlo $ ilde{A}$ « and other congeneric European species. Mycological Research, 1998, 102, 1169-1182. | 2.5 | 92 | | 14 | Infection of Woodland Grasses by Fungal Endophytes. Mycologia, 1989, 81, 805-811. | 1.9 | 83 | | 15 | Epichloë grass endophytes increase herbivore resistance in the woodland grass Brachypodium sylvaticum. Oecologia, 2001, 126, 522-530. | 2.0 | 80 | | 16 | Growth and Water Status in Meadow Fescue is Affected by Neotyphodium and Phialophora Species Endophytes. Agronomy Journal, 1997, 89, 673-678. | 1.8 | 76 | | 17 | Infection of Woodland Grasses by Fungal Endophytes. Mycologia, 1989, 81, 805. | 1.9 | 72 | | 18 | Symbiosis with Neotyphodium uncinatum Endophyte May Increase the Competitive Ability of Meadow Fescue. Agronomy Journal, 1997, 89, 833-839. | 1.8 | 69 | | # | Article | IF | CITATIONS | |----|--|-------------|-----------| | 19 | Isozyme relationships of Acremonium endophytes from twelve Festuca species. Mycological Research, 1994, 98, 25-33. | 2.5 | 67 | | 20 | Evolution of â€~pollinator'- attracting signals in fungi. Biology Letters, 2006, 2, 401-404. | 2.3 | 65 | | 21 | Two distinct <i>Epichloë</i> species symbiotic with <i>Achnatherum inebrians</i> , drunken horse grass.
Mycologia, 2015, 107, 863-873. | 1.9 | 62 | | 22 | <i>Periglandula</i> , a new fungal genus within the Clavicipitaceae and its association with Convolvulaceae. Mycologia, 2011, 103, 1133-1145. | 1.9 | 59 | | 23 | Three new species ofEpichloësymbiotic with North American grasses. Mycologia, 1999, 91, 95-107. | 1.9 | 57 | | 24 | Effects of natural hybrid and nonâ€hybrid <i>Epichloë</i> endophytes on the response of <i>Hordelymus europaeus</i> to drought stress. New Phytologist, 2014, 201, 242-253. | 7.3 | 57 | | 25 | Intraspecific competition of endophyte infected vs uninfected plants of two woodland grass species. Oikos, 2002, 96, 281-290. | 2.7 | 54 | | 26 | <i>Atkinsonella Hypoxylon</i> and <i>Balansia Cyperi</i> , Epiphytic Members of the Balansiae.
Mycologia, 1988, 80, 192-199. | 1.9 | 53 | | 27 | Three New Species of Epichloe Symbiotic with North American Grasses. Mycologia, 1999, 91, 95. | 1.9 | 50 | | 28 | Mycorrhizas improve nitrogen nutrition of Trifolium repens after 8Âyr of selection under elevated atmospheric CO 2 partial pressure. New Phytologist, 2005, 167, 531-542. | 7. 3 | 49 | | 29 | Multistrain infections of the grass Brachypodium sylvaticum by its fungal endophyte Epichloë sylvatica. New Phytologist, 1999, 141, 355-368. | 7. 3 | 48 | | 30 | A totivirus infecting the mutualistic fungal endophyte Epichloë festucae. Virus Research, 2007, 124, 38-43. | 2.2 | 48 | | 31 | Arbuscular mycorrhizal fungi benefit from 7 years of free air CO2 enrichment in well-fertilized grass and legume monocultures. Global Change Biology, 2004, 10, 189-199. | 9.5 | 46 | | 32 | ITS rDNA phylogeny of Iranian strains of Cytospora and associated teleomorphs. Mycologia, 2010, 102, 1369-1382. | 1,9 | 45 | | 33 | Ergobalansine, a New Ergot-Type Peptide Alkaloid Isolated from Cenchrus echinatus (Sandbur Grass)
Infected with Balansia obtecta, and Produced in Liquid Cultures of B. obtecta and Balansia cyperi.
Journal of Natural Products, 1990, 53, 1272-1279. | 3.0 | 44 | | 34 | Role of odour compounds in the attraction of gamete vectors in endophytic $<$ i $>$ EpichloÃ $<$ (i $>$ fungi. New Phytologist, 2008, 178, 401-411. | 7. 3 | 44 | | 35 | Nomenclatural realignment of Neotyphodium species with genus Epichloe. Mycologia, 2014, 106, 202-215. | 1.9 | 42 | | 36 | Isozyme variation in the fungus <i>Atkinsonella hypoxylon</i> within and among populations of its host grasses. Canadian Journal of Botany, 1989, 67, 2600-2607. | 1.1 | 41 | | # | Article | IF | CITATIONS | |----|--|-----|-----------| | 37 | Biology of the Epichloë–Botanophila interaction: An intriguing association between fungi and insects. Fungal Biology Reviews, 2008, 22, 131-138. | 4.7 | 41 | | 38 | Significance of the fungus balansia cyperi infecting medicinal species of cyperus (Cyperaceae) from Amazonia. Economic Botany, 1990, 44, 452-462. | 1.7 | 38 | | 39 | Genetic diversity in epichloid endophytes of <i>Hordelymus europaeus</i> suggests repeated host jumps and interspecific hybridizations. Molecular Ecology, 2012, 21, 2713-2726. | 3.9 | 36 | | 40 | Ecological role of volatiles produced by Epichlo $\tilde{A}f\hat{A}$ «: differences in antifungal toxicity. FEMS Microbiology Ecology, 2008, 64, 307-316. | 2.7 | 34 | | 41 | Nonreciprocal Compatibility BetweenEpichloë Typhinaand Four Host Grasses. Mycologia, 1993, 85, 157-163. | 1.9 | 33 | | 42 | The effects of genetic and environmental factors on disease expression (stroma formation) and plant growth in Brachypodium sylvaticum infected by Epichloë sylvatica. Oikos, 2000, 91, 446-458. | 2.7 | 33 | | 43 | MOLECULAR EVIDENCE FOR HOST-ADAPTED RACES OF THE FUNGAL ENDOPHYTE EPICHLOë BROMICOLA AFTER PRESUMED HOST SHIFTS. Evolution; International Journal of Organic Evolution, 2003, 57, 37. | 2.3 | 33 | | 44 | Experimental Infection of Host Grasses and Sedges withAtkinsonella HypoxylonandBalansia Cyperi(Balansiae, Clavicipitaceae). Mycologia, 1988, 80, 291-297. | 1.9 | 32 | | 45 | Isozyme subgroups inTrichodermasectionLongibrachiatum. Mycologia, 1996, 88, 384-394. | 1.9 | 32 | | 46 | A test of host specialization by insect vectors as a mechanism for reproductive isolation among entomophilous fungal species. Oikos, 2003, 103, 681-687. | 2.7 | 32 | | 47 | Evidence for Genetic Differentiation Between Choke-Inducing and Asymptomtic Strains of the Epichloe
Grass Endophyte from Brachypodium sylvaticum. Evolution; International Journal of Organic
Evolution, 1996, 50, 1879. | 2.3 | 31 | | 48 | Atkinsonella hypoxylon and Balansia cyperi, Epiphytic Members of the Balansiae. Mycologia, 1988, 80, 192. | 1.9 | 29 | | 49 | Variation in horizontal and vertical transmission of the endophyte <i>Epichloë elymi</i> infecting the grass <i>Elymus hystrix</i> . New Phytologist, 2008, 179, 236-246. | 7.3 | 29 | | 50 | Assessing effects of the entomopathogenic fungus Metarhizium brunneum on soil microbial communities in Agriotes spp. biological pest control. FEMS Microbiology Ecology, 2017, 93, . | 2.7 | 29 | | 51 | EXPERIMENTAL EVIDENCE FOR GENETIC VARIATION IN COMPATIBILITY BETWEEN THE FUNGUS <i>ATKINSONELLA HYPOXYLON </i> AND ITS THREE HOST GRASSES. Evolution; International Journal of Organic Evolution, 1989, 43, 825-834. | 2.3 | 28 | | 52 | Genomewide signatures of selection in <i>Epichlo\tilde{A}«</i> reveal candidate genes for host specialization. Molecular Ecology, 2018, 27, 3070-3086. | 3.9 | 28 | | 53 | Efficient nonenzymatic cyclization and domain shuffling drive pyrrolopyrazine diversity from truncated variants of a fungal NRPS. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25614-25623. | 7.1 | 27 | | 54 | Experimental Infection of Host Grasses and Sedges with Atkinsonella hypoxylon and Balansia cyperi (Balansiae, Clavicipitaceae). Mycologia, 1988, 80, 291. | 1.9 | 26 | | # | Article | IF | Citations | |----|---|-----|-----------| | 55 | Morphological, Cultural and Mating Studies on Atkinsonella, including A. texensis. Mycologia, 1989, 81, 692. | 1.9 | 26 | | 56 | Genetic differentiation of the Erigeron species (Asteraceae) in the Alps: A case of unusual allozymic uniformity. Plant Systematics and Evolution, 1992, 183, 1-16. | 0.9 | 26 | | 57 | Nonreciprocal Compatibility between Epichloe typhina and Four Host Grasses. Mycologia, 1993, 85, 157. | 1.9 | 26 | | 58 | Isozyme polymorphism in six endophytic Phyllosticta species. Mycological Research, 1992, 96, 287-294. | 2.5 | 24 | | 59 | Morphological, Cultural and Mating Studies on Atkinsonella, Including A. Texensis. Mycologia, 1989,
81, 692-701. | 1.9 | 22 | | 60 | Botanophilaflies onEpichloëhost species in Europe and North America: no evidence for co-evolution. Entomologia Experimentalis Et Applicata, 2007, 123, 13-23. | 1.4 | 22 | | 61 | Multiplexed microsatellite markers for seven Metarhizium species. Journal of Invertebrate Pathology, 2015, 132, 132-134. | 3.2 | 21 | | 62 | Isozyme Subgroups in Trichoderma Section Longibrachiatum. Mycologia, 1996, 88, 384. | 1.9 | 20 | | 63 | Variation of Insect Attracting Odor in Endophytic Epichloë Fungi: Phylogenetic Constrains Versus
Host Influence. Journal of Chemical Ecology, 2008, 34, 772-782. | 1.8 | 20 | | 64 | The effect of <i>Piriformospora indica </i> on the root development of maize (<i>Zea mays </i> L.) and remediation of petroleum contaminated soil. International Journal of Phytoremediation, 2016, 18, 278-287. | 3.1 | 20 | | 65 | The $\langle i \rangle$ Epichloë $\langle i \rangle$ endophytes associated with the woodland grass $\langle i \rangle$ Hordelymus europaeus $\langle i \rangle$ including four new taxa. Mycologia, 2013, 105, 1315-1324. | 1.9 | 19 | | 66 | Horizontal transmission, persistence and competition capabilities of Epichloë endophytes in Hordelymus europaeus grass hosts using dual endophyte inocula. Fungal Ecology, 2014, 11, 37-49. | 1.6 | 19 | | 67 | <i>Botanophilaâ€"Epichloë</i> Interaction in a Wild Grass, <i>Puccinellia distans</i> , Lacks Dependence on the Fly Vector. Annals of the Entomological Society of America, 2011, 104, 841-846. | 2.5 | 18 | | 68 | Taxon-specific PCR primers to detect two inconspicuous arbuscular mycorrhizal fungi from temperate agricultural grassland. Mycorrhiza, 2007, 17, 145-152. | 2.8 | 17 | | 69 | <i>Epichloe novae-zelandiae</i> , a new endophyte from the endemic New Zealand grass <i>Poa matthewsii</i> . New Zealand Journal of Botany, 2019, 57, 271-288. | 1.1 | 16 | | 70 | Variability among isolates of <i>Xylaria cubensis</i> as determined by isozyme analysis and somatic incompatibility tests. Mycologia, 1995, 87, 592-596. | 1.9 | 15 | | 71 | EVIDENCE FOR GENETIC DIFFERENTIATION BETWEEN CHOKE-INDUCING AND ASYMPTOMATIC STRAINS OF THE <i>> EPICHLOÃ < /i> GRASS ENDOPHYTE FROM <i>> BRACHYPODIUM SYLVATICUM < /i> Evolution; International Journal of Organic Evolution, 1996, 50, 1879-1887.</i></i> | 2.3 | 15 | | 72 | Genetic Evidence for Reproductive Isolation Among Sympatric Epichloë Endophytes as Inferred from Newly Developed Microsatellite Markers. Microbial Ecology, 2015, 70, 51-60. | 2.8 | 15 | | # | Article | IF | CITATIONS | |------------|---|---------------|--------------------------| | 73 | Ecological Diversity in Neotyphodium-Infected Grasses as Influenced by Host and Fungus Characteristics., 1997,, 93-108. | | 15 | | 74 | An unusual <i>Botanophila</i> – <i>Epichloë</i> association in a population of orchardgrass (<i>Dactylis glomerata</i>) in Poland. Journal of Natural History, 2010, 44, 2817-2824. | 0.5 | 14 | | 7 5 | Large Scale Screening of Epichloë Endophytes Infecting Schedonorus pratensis and Other Forage
Grasses Reveals a Relation Between Microsatellite-Based Haplotypes and Loline Alkaloid Levels.
Frontiers in Plant Science, 2019, 10, 765. | 3.6 | 14 | | 76 | MOLECULAR EVIDENCE FOR HOST-ADAPTED RACES OF THE FUNGAL ENDOPHYTE EPCHLOë BROMICOLA AFTER PRESUMED HOST SHIFTS. Evolution; International Journal of Organic Evolution, 2003, 57, 37-51. | 2.3 | 13 | | 77 | The role of host-specificity in the reproductive isolation of Epichloë endophytes revealed by reciprocal infections. Fungal Ecology, 2015, 15, 29-38. | 1.6 | 13 | | 78 | The Epichloë Endophytes of Grasses and the Symbiotic Continuum. Mycology, 2005, , 475-503. | 0.5 | 13 | | 79 | The taxonomic position of the genus Heydenia (Pyronemataceae, Pezizales) based on molecular and morphological data. Mycological Progress, 2012, 11, 699-710. | 1.4 | 12 | | 80 | Experimental Evidence for Genetic Variation in Compatibility between the Fungus Atkinsonella hypoxylon and its three Host Grasses. Evolution; International Journal of Organic Evolution, 1989, 43, 825. | 2.3 | 11 | | 81 | Do <i>Botanophila</i> flies provide reproductive isolation between two species of <i>Epichloë</i> fungi? A field test. New Phytologist, 2011, 190, 206-212. | 7.3 | 11 | | 82 | Response of soil microbial communities to the application of a formulated <i>Metarhizium brunneum</i> biocontrol strain. Biocontrol Science and Technology, 2019, 29, 547-564. | 1.3 | 11 | | 83 | The occurrence and preference of Botanophila flies (Diptera: Anthomyiidae) for particular species of Epichloë fungi infecting wild grasses. European Journal of Entomology, 2013, 110, 129-134. | 1.2 | 11 | | 84 | Isozyme evidence for host races of the fungus Atkinsonella hypoxylon (Clavicipitaceae) infecting the Danthonia (Poaceae) complex in the southern Appalachians. American Journal of Botany, 1996, 83, 1144-1152. | 1.7 | 10 | | 85 | Truffles on the move. Frontiers in Ecology and the Environment, 2019, 17, 200-202. | 4.0 | 10 | | 86 | Variability among Isolates of Xylaria cubensis as Determined by Isozyme Analysis and Somatic Incompatibility Tests. Mycologia, 1995, 87, 592. | 1.9 | 8 | | 87 | Biology and evolution of the Epichloë-associated Botanophila species found in Europe (Diptera:) Tj ETQq1 I | 0.784314 rgBT | √gOverloc <mark>k</mark> | | 88 | Assortative mating in sympatric ascomycete fungi revealed by experimental fertilizations. Fungal Biology, 2019, 123, 676-686. | 2.5 | 7 | | 89 | Botanophila flies, vectors of Epichloë fungal spores, are infected by Wolbachia. Mycology, 2019, 10, 1-5. | 4.4 | 7 | | 90 | Taxonomy and Diversity of Epichloe Endophytes. , 2003, , . | | 7 | | # | Article | IF | CITATIONS | |----|---|-----|-----------| | 91 | Chromosome-level genomes provide insights into genome evolution, organization and size in Epichloe fungi. Genomics, 2021, 113, 4267-4275. | 2.9 | 6 | | 92 | Isozyme Evidence for Host Races of the Fungus Atkinsonella hypoxylon (Clavicipitaceae) Infecting the Danthonia (Poaceae) Complex in the Southern Appalachians. American Journal of Botany, 1996, 83, 1144. | 1.7 | 5 | | 93 | Man-made habitats - hotspots of evolutionary game between grass, fungus and fly. Biodiversity Research and Conservation, 2009, 15, 47-52. | 0.3 | 4 | | 94 | Cross-species transcriptomics identifies core regulatory changes differentiating the asymptomatic asexual and virulent sexual life cycles of grass-symbiotic <i>Epichloë</i> fungi. G3: Genes, Genomes, Genetics, 2022, 12, . | 1.8 | 4 | | 95 | A king amongst dwarfs: Boletus edulis forms ectomycorrhiza with dwarf willow in the Swiss Alps.
Alpine Botany, 2019, 129, 185-189. | 2.4 | 2 | Telomere-to-Telomere Genome Sequences across a Single Genus Reveal Highly Variable Chromosome Rearrangement Rates but Absolute Stasis of Chromosome Number. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /Oværløck 10 Tf 50 537 T 7