

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6735420/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials, 2003, 24, 3805-3813.	11.4	344
2	Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. Journal of Applied Physiology, 2003, 94, 770-783.	2.5	312
3	Design and function of novel osteoblast-adhesive peptides for chemical modification of biomaterials. , 1998, 40, 371-377.		234
4	Endothelial cell migration on surfaces modified with immobilized adhesive peptides. Biomaterials, 2000, 21, 1725-1733.	11.4	121
5	Conditions which promote mineralization at the bone-implant interface: a model in vitro study. Biomaterials, 1996, 17, 209-215.	11.4	120
6	Pressure gradient, not exposure duration, determines the extent of epithelial cell damage in a model of pulmonary airway reopening. Journal of Applied Physiology, 2004, 97, 269-276.	2.5	119
7	Osteoblast population migration characteristics on substrates modified with immobilized adhesive peptides. Biomaterials, 1999, 20, 221-227.	11.4	94
8	Development of Ligament-Like Structural Organization and Properties in Cell-Seeded Collagen Scaffolds in vitro. Annals of Biomedical Engineering, 2006, 34, 726-736.	2.5	72
9	Collagen Composite Biomaterials Resist Contraction While Allowing Development of Adipocytic Soft Tissue In Vitro. Tissue Engineering, 2006, 12, 1639-1649.	4.6	62
10	Mini-review: Proactive biomaterials and bone tissue engineering. , 2000, 50, 438-442.		49
11	Short Collagen Fibers Provide Control of Contraction and Permeability in Fibroblast-Seeded Collagen Gels. Tissue Engineering, 2004, 10, 421-427.	4.6	46
12	Comparison of in Vitro Mineralization by Murine Embryonic and Adult Stem Cells Cultured in an Osteogenic Medium. Tissue Engineering, 2004, 10, 1386-1398.	4.6	36
13	"Culture shock―from the bone cell's perspective: emulating physiological conditions for mechanobiological investigations. American Journal of Physiology - Cell Physiology, 2004, 287, C1527-C1536.	4.6	34
14	Supplemental Instruction Integrated Into an Introductory Engineering Course*. Journal of Engineering Education, 1998, 87, 377-383.	3.0	26
15	In Vitro Mineralization Studies with Substrate-immobilized Bone Morphogenetic Protein Peptides. Journal of Oral Implantology, 2003, 29, 57-65.	1.0	26
16	An assessment of the strength of NG108-15 cell adhesion to chemically modified surfaces. Biomaterials, 1999, 20, 2417-2425.	11.4	25
17	Enhanced Endothelialization of Substrates Modified with Immobilized Bioactive Peptides. Tissue Engineering, 1995, 1, 135-145.	4.6	22
18	Research Report: Learning Styles of Biomedical Engineering Students. Annals of Biomedical Engineering, 2002, 30, 1100-1106.	2.5	20

KAY C DEE

#	Article	IF	CITATIONS
19	Cell Function on Substrates Containing Immobilized Bioactive Peptides. Materials Research Society Symposia Proceedings, 1993, 331, 115.	0.1	19
20	A jet impingement investigation of osteoblastic cell adhesion. Journal of Biomedical Materials Research Part B, 2002, 62, 422-429.	3.1	18
21	Student Perceptions of High Course Workloads are Not Associated with Poor Student Evaluations of Instructor Performance. Journal of Engineering Education, 2007, 96, 69-78.	3.0	16
22	A Device for Long Term, In Vitro Loading of Three-Dimensional Natural and Engineered Tissues. Annals of Biomedical Engineering, 2003, 31, 1347-1356.	2.5	15
23	Engineering of materials for biomedical applications. Materials Today, 2000, 3, 7-10.	14.2	14
24	Design and function of novel osteoblastâ€adhesive peptides for chemical modification of biomaterials. Journal of Biomedical Materials Research Part B, 1998, 40, 371-377.	3.1	6
25	Biomaterial Surfaces and the Physiological Environment. , 2003, , 149-172.		2
26	Operating Curves to Characterize the Contraction of Fibroblast-Seeded Collagen Gel/Collagen Fiber Composite Biomaterials: Effect of Fiber Mass. Plastic and Reconstructive Surgery, 2007, 119, 508-516.	1.4	2
27	Collagen Composite Biomaterials Resist Contraction While Allowing Development of Adipocytic Soft Tissue In Vitro. Tissue Engineering, 2006, .	4.6	2
28	Comparison of <1>in Vitro 1 Mineralization by Murine Embryonic and Adult Stem Cells Cultured in an Osteogenic Medium. Tissue Engineering, 2004, 10, 1386-1398.	4.6	1
29	Work in progress — Rules of engagement: Student interest and learning in hands-on laboratory experiences. , 2010, , .		0
30	Making Space for Other Voices: Hands-On, Human-Centered Design Delivered Online. Biomedical Engineering Education, 2021, 1, 11-17.	0.7	0
31	Effects of Sterilization Techniques and Culture Time on the Creep of Collagenous Ligament Analogues. , 2002, , .		0