Arthur Liesz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6735311/publications.pdf

Version: 2024-02-01

71102 91884 7,457 72 41 69 citations h-index g-index papers 78 78 78 8849 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Loss of TREM2 rescues hyperactivation of microglia, but not lysosomal deficits and neurotoxicity in models of progranulin deficiency. EMBO Journal, 2022, 41, e109108.	7.8	38
2	Reduced Acquisition Time [18F]GE-180 PET Scanning Protocol Replaces Gold-Standard Dynamic Acquisition in a Mouse Ischemic Stroke Model. Frontiers in Medicine, 2022, 9, 830020.	2.6	5
3	Detection of cytokine-induced sickness behavior after ischemic stroke by an optimized behavioral assessment battery. Brain, Behavior, and Immunity, 2021, 91, 668-672.	4.1	13
4	Microbiota-derived short chain fatty acids modulate microglia and promote $\hat{Al^2}$ plaque deposition. ELife, 2021, 10, .	6.0	148
5	Post-injury immunosuppression and secondary infections are caused by an AlM2 inflammasome-driven signaling cascade. Immunity, 2021, 54, 648-659.e8.	14.3	57
6	Modeling Stroke in Mice: Focal Cortical Lesions by Photothrombosis. Journal of Visualized Experiments, 2021, , .	0.3	4
7	Modeling Stroke in Mice: Transient Middle Cerebral Artery Occlusion via the External Carotid Artery. Journal of Visualized Experiments, 2021, , .	0.3	5
8	Chronic T cell proliferation in brains after stroke could interfere with the efficacy of immunotherapies. Journal of Experimental Medicine, 2021, 218, .	8.5	26
9	Single-cell profiling of CNS border compartment leukocytes reveals that B cells and their progenitors reside in non-diseased meninges. Nature Neuroscience, 2021, 24, 1225-1234.	14.8	103
10	Implications of immune responses for ischemic brain injury and stroke recovery. Brain, Behavior, and Immunity, 2021, 96, 292-294.	4.1	1
11	The gut microbiota modulates brain network connectivity under physiological conditions and after acute brain ischemia. IScience, 2021, 24, 103095.	4.1	12
12	Coming to the Rescue: Regulatory T Cells for Promoting Recovery After Ischemic Stroke. Stroke, 2021, 52, e837-e841.	2.0	9
13	A macrophage-T cell coculture model for severe tissue injury-induced TÂcell death. STAR Protocols, 2021, 2, 100983.	1.2	2
14	Short-Chain Fatty Acids Improve Poststroke Recovery via Immunological Mechanisms. Journal of Neuroscience, 2020, 40, 1162-1173.	3.6	199
15	Active polyâ€GA vaccination prevents microglia activation and motor deficits in a <i>C9orf72</i> mouse model. EMBO Molecular Medicine, 2020, 12, e10919.	6.9	39
16	Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science, 2020, 367, 528-537.	12.6	381
17	The microbiome-gut-brain axis in acute and chronic brain diseases. Current Opinion in Neurobiology, 2020, 61, 1-9.	4.2	105
18	Histone Deacetylase 9 Activates IKK to Regulate Atherosclerotic Plaque Vulnerability. Circulation Research, 2020, 127, 811-823.	4.5	64

#	Article	IF	CITATIONS
19	Fibrillar ${\rm A}\hat{\rm I}^2$ triggers microglial proteome alterations and dysfunction in Alzheimer mouse models. ELife, 2020, 9, .	6.0	80
20	The vascular side of Alzheimer's disease. Science, 2019, 365, 223-224.	12.6	34
21	In vivo widefield calcium imaging of the mouse cortex for analysis of network connectivity in health and brain disease. Neurolmage, 2019, 199, 570-584.	4.2	50
22	Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nature Neuroscience, 2019, 22, 317-327.	14.8	318
23	T cells in the post-ischemic brain: Troopers or paramedics?. Journal of Neuroimmunology, 2019, 326, 33-37.	2.3	28
24	<scp>CCL</scp> 23: a new <scp>CC</scp> chemokine involved in human brain damage. Journal of Internal Medicine, 2018, 283, 461-475.	6.0	32
25	Brain-released alarmins and stress response synergize in accelerating atherosclerosis progression after stroke. Science Translational Medicine, 2018, 10, .	12.4	54
26	The Role of T Cells in Post-stroke Regeneration. Springer Series in Translational Stroke Research, 2018, , 491-507.	0.1	0
27	The gut microbiome primes a cerebroprotective immune response after stroke. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1293-1298.	4.3	91
28	Automated Morphological Analysis of Microglia After Stroke. Frontiers in Cellular Neuroscience, 2018, 12, 106.	3.7	169
29	The meningeal and choroidal infiltration routes for leukocytes in stroke. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628641878370.	3.5	56
30	Reliability of infarct volumetry: Its relevance and the improvement by a software-assisted approach. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3015-3026.	4.3	15
31	Microbiota differences between commercial breeders impacts the post-stroke immune response. Brain, Behavior, and Immunity, 2017, 66, 23-30.	4.1	58
32	Young microglia restore amyloid plaque clearance of aged microglia. EMBO Journal, 2017, 36, 583-603.	7.8	124
33	RNA-Seq Identifies Circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as Potential Biomarkers for Acute Ischemic Stroke. Circulation Research, 2017, 121, 970-980.	4.5	210
34	The choroid plexus is a key cerebral invasion route for T cells after stroke. Acta Neuropathologica, 2017, 134, 851-868.	7.7	87
35	Homeostatic nuclear RAGE–ATM interaction is essential for efficient DNA repair. Nucleic Acids Research, 2017, 45, 10595-10613.	14.5	66
36	Inadequate food and water intake determine mortality following stroke in mice. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2084-2097.	4.3	46

#	Article	IF	CITATIONS
37	TREM2 deficiency reduces the efficacy of immunotherapeutic amyloid clearance. EMBO Molecular Medicine, 2016, 8, 992-1004.	6.9	144
38	Regulatory T Cells in Post-stroke Immune Homeostasis. Translational Stroke Research, 2016, 7, 313-321.	4.2	84
39	Interfering with the Chronic Immune Response Rescues Chronic Degeneration After Traumatic Brain Injury. Journal of Neuroscience, 2016, 36, 9962-9975.	3.6	79
40	Regulatory T Cells in Ischemic Brain Injury. Springer Series in Translational Stroke Research, 2016, , 201-215.	0.1	0
41	Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke. Journal of Neuroscience, 2016, 36, 7428-7440.	3.6	530
42	The next step in translational research: lessons learned from the first preclinical randomized controlled trial. Journal of Neurochemistry, 2016, 139, 271-279.	3.9	45
43	HMGB1 as a Key Mediator of Immune Mechanisms in Ischemic Stroke. Antioxidants and Redox Signaling, 2016, 24, 635-651.	5.4	95
44	Stroke research at the crossroads - where are we heading?. Swiss Medical Weekly, 2016, 146, w14329.	1.6	14
45	Editorial: Mechanisms of neuroinflammation and inflammatory neurodegeneration in acute brain injury. Frontiers in Cellular Neuroscience, 2015, 9, 300.	3.7	4
46	Acquired Immunoglobulin G deficiency in stroke patients and experimental brain ischemia. Experimental Neurology, 2015, 271, 46-52.	4.1	19
47	DAMP Signaling is a Key Pathway Inducing Immune Modulation after Brain Injury. Journal of Neuroscience, 2015, 35, 583-598.	3.6	275
48	Results of a preclinical randomized controlled multicenter trial (pRCT): Anti-CD49d treatment for acute brain ischemia. Science Translational Medicine, 2015, 7, 299ra121.	12.4	207
49	Response to Letter Regarding Article, "Amplification of Regulatory T Cells Using a CD28 Superagonist Reduces Brain Damage After Ischemic Stroke in Mice― Stroke, 2015, 46, e52.	2.0	4
50	Functional Role of Regulatory Lymphocytes in Stroke. Stroke, 2015, 46, 1422-1430.	2.0	136
51	Amplification of Regulatory T Cells Using a CD28 Superagonist Reduces Brain Damage After Ischemic Stroke in Mice. Stroke, 2015, 46, 212-220.	2.0	94
52	Antigen Dependently Activated Cluster of Differentiation 8-Positive T Cells Cause Perforin-Mediated Neurotoxicity in Experimental Stroke. Journal of Neuroscience, 2014, 34, 16784-16795.	3.6	83
53	Leukocyte Invasion of the Brain After Experimental Intracerebral Hemorrhage in Mice. Stroke, 2014, 45, 2107-2114.	2.0	121
54	Caspase-1 signaling links monocyte activation and pyroptotic lymphocytopenia after acute brain injury. Journal of Neuroimmunology, 2014, 275, 71-72.	2.3	0

#	Article	IF	CITATIONS
55	Intracerebral interleukin-10 injection modulates post-ischemic neuroinflammation: An experimental microarray study. Neuroscience Letters, 2014, 579, 18-23.	2.1	55
56	Differential effects of sympathetic nervous system and hypothalamic–pituitary–adrenal axis on systemic immune cells after severe experimental stroke. Brain, Behavior, and Immunity, 2014, 41, 200-209.	4.1	114
57	Modeling Stroke in Mice: Permanent Coagulation of the Distal Middle Cerebral Artery. Journal of Visualized Experiments, 2014, , e51729.	0.3	73
58	Spectratype analysis of clonal T cell expansion in murine experimental stroke. Journal of Neuroimmunology, 2013, 257, 46-52.	2.3	33
59	Postischemic Brain Infiltration of Leukocyte Subpopulations Differs among Murine Permanent and Transient Focal Cerebral Ischemia Models. Brain Pathology, 2013, 23, 34-44.	4.1	128
60	Boosting Regulatory T Cells Limits Neuroinflammation in Permanent Cortical Stroke. Journal of Neuroscience, 2013, 33, 17350-17362.	3.6	171
61	Stress Mediators and Immune Dysfunction in Patients with Acute Cerebrovascular Diseases. PLoS ONE, 2013, 8, e74839.	2.5	55
62	Hematoma size as major modulator of the cellular immune system after experimental intracerebral hemorrhage. Neuroscience Letters, 2011, 490, 170-174.	2.1	30
63	FTY720 Reduces Post-Ischemic Brain Lymphocyte Influx but Does Not Improve Outcome in Permanent Murine Cerebral Ischemia. PLoS ONE, 2011, 6, e21312.	2.5	92
64	Reduced Efficacy of Circulating Costimulatory Cells After Focal Cerebral Ischemia. Stroke, 2011, 42, 3580-3586.	2.0	34
65	Usefulness of Serum Procalcitonin Levels for the Early Diagnosis of Stroke-Associated Respiratory Tract Infections. Neurocritical Care, 2011, 14, 416-422.	2.4	30
66	Comparison of humoral neuroinflammation and adhesion molecule expression in two models of experimental intracerebral hemorrhage. Experimental & Translational Stroke Medicine, 2011, 3, 11.	3.2	38
67	Hemostatic Therapy in Experimental Intracerebral Hemorrhage Associated With the Direct Thrombin Inhibitor Dabigatran. Stroke, 2011, 42, 3594-3599.	2.0	334
68	Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain, 2011, 134, 704-720.	7.6	346
69	Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nature Medicine, 2009, 15, 192-199.	30.7	908
70	Infarct Volume is a Major Determiner of Post-Stroke Immune Cell Function and Susceptibility to Infection. Stroke, 2009, 40, 3226-3232.	2.0	201
71	The Spectrum of Systemic Immune Alterations After Murine Focal Ischemia. Stroke, 2009, 40, 2849-2858.	2.0	142
72	Immunity in Stroke: The Next Frontier. Thrombosis and Haemostasis, 0, , .	3.4	3