
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6733622/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adsorption of the inhalation anaesthetic isoflurane by activated carbon fibres with reference data on non-porous carbon. Adsorption, 2020, 26, 627-632.	3.0	0
2	Evolution of porosity of activated carbon fibres prepared from pre-oxidized acrylic fibres. Microporous and Mesoporous Materials, 2018, 264, 176-180.	4.4	7
3	An innovative approach to develop microporous activated carbons in oxidising atmosphere. Journal of Cleaner Production, 2017, 156, 549-555.	9.3	35
4	Porosity in ion-exchanged and acid activated clays evaluated using n-nonane pre-adsorption. Microporous and Mesoporous Materials, 2016, 232, 238-247.	4.4	1
5	Cellulose: A review as natural, modified and activated carbon adsorbent. Bioresource Technology, 2016, 216, 1066-1076.	9.6	538
6	Development of a selective sorbent for the solidâ€phase extraction of terbuthylazine in olive oil samples: A molecular imprinting strategy. Journal of Separation Science, 2015, 38, 1204-1212.	2.5	19
7	Adsorption of toluene and toluene–water vapor mixture on almond shell based activated carbons. Adsorption, 2013, 19, 1137-1148.	3.0	31
8	Surface and porous characterisation of activated carbons made from a novel biomass precursor, the esparto grass. Applied Surface Science, 2013, 265, 919-924.	6.1	70
9	Amine-Modified Carbon Aerogels for CO ₂ Capture. Adsorption Science and Technology, 2013, 31, 223-232.	3.2	12
10	On the use of ethanol for evaluating microporosity of activated carbons prepared from Polish lignite. Fuel Processing Technology, 2012, 103, 34-38.	7.2	7
11	The influence of the activated carbon post-treatment on the phenolic compounds removal. Fuel Processing Technology, 2012, 103, 64-70.	7.2	51
12	Trends in the condensation/evaporation and adsorption enthalpies of volatile organic compounds on mesoporous silica materials. Microporous and Mesoporous Materials, 2012, 151, 223-230.	4.4	39
13	Core-shell polymer aerogels prepared by co-polymerisation of 2,4-dihydroxybenzoic acid, resorcinol and formaldehyde. Microporous and Mesoporous Materials, 2012, 158, 170-174.	4.4	17
14	Hydrocarbonsadsorption on templated mesoporous materials: effect of the pore size, geometry and surface chemistry. New Journal of Chemistry, 2011, 35, 407-416.	2.8	54
15	Nitrogen Adsorption Studies on Non-Porous Silica: The Annealing Effect over Surface Non-Bridging Oxygen Atoms. Adsorption Science and Technology, 2011, 29, 357-364.	3.2	3
16	Tailoring the surface chemistry of mesocellular foams for protein adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 386, 25-35.	4.7	27
17	Effect of the activating agent on physico-chemical and electrical properties of activated carbon cloths developed from a novel cellulosic precursor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 378, 87-93.	4.7	23
18	Diffusion of gases in metal containing carbon aerogels. Fuel Processing Technology, 2011, 92, 229-233.	7.2	7

#	Article	IF	CITATIONS
19	Production of activated carbons from almond shell. Fuel Processing Technology, 2011, 92, 234-240.	7.2	95
20	Influence of oxidation process on the adsorption capacity of activated carbons from lignocellulosic precursors. Fuel Processing Technology, 2011, 92, 241-246.	7.2	63
21	Direct synthesis without addition of acid of Al-SBA-15 with controllable porosity and high hydrothermal stability. Microporous and Mesoporous Materials, 2011, 142, 526-534.	4.4	57
22	Adsorption Properties of Activated Carbons Prepared from Recycled PET in the Removal of Organic Pollutants from Aqueous Solutions. Adsorption Science and Technology, 2010, 28, 807-821.	3.2	17
23	Adsorption of Bovine Serum Albumin onto Mesocellular Silica Foams with Differently Sized Cells and Windows. Adsorption Science and Technology, 2010, 28, 777-788.	3.2	6
24	Thermal conversion of a novel biomass agricultural residue (vine shoots) into activated carbon using activation with CO2. Journal of Analytical and Applied Pyrolysis, 2010, 87, 8-13.	5.5	62
25	Adsorption of volatile organic compounds onto activated carbon cloths derived from a novel regenerated cellulosic precursor. Journal of Hazardous Materials, 2010, 177, 175-182.	12.4	125
26	Characterisation of the porosity of polymer and carbon aerogels containing Fe, Ni or Cu prepared from 2,4-dihydroxybenzoic acid by n-nonane pre-adsorption and density functional theory. Microporous and Mesoporous Materials, 2010, 131, 75-81.	4.4	21
27	Comparison of the Dubinin–Radushkevich and Quenched Solid Density Functional Theory approaches for the characterisation of narrow microporosity in activated carbons obtained by chemical activation with KOH or NaOH of Kraft and hydrolytic lignins. Carbon, 2010, 48, 4162-4169.	10.3	25
28	Characterization of the Surface of Activated Carbons Produced from Tire Residues. Materials Science Forum, 2010, 636-637, 1383-1388.	0.3	1
29	Designing Activated Carbons from Natural and Synthetic Raw Materials for Pollutants Adsorption. Materials Science Forum, 2010, 636-637, 1404-1409.	0.3	7
30	Simulations of Phenol Adsorption onto Activated Carbon and Carbon Black. Adsorption Science and Technology, 2010, 28, 797-806.	3.2	7
31	Ordered Mesoporous Silica Materials for Protein Adsorption. Materials Science Forum, 2010, 636-637, 54-59.	0.3	6
32	Influence of thermal treatment conditions on porosity development and mechanical properties of activated carbon cloths from a novel nanofibre-made fabric. Materials Chemistry and Physics, 2009, 116, 310-314.	4.0	15
33	PEEK: An excellent precursor for activated carbon production for high temperature application. Fuel Processing Technology, 2009, 90, 232-236.	7.2	15
34	Phenol removal onto novel activated carbons made from lignocellulosic precursors: Influence of surface properties. Journal of Hazardous Materials, 2009, 167, 904-910.	12.4	76
35	Characterisation by adsorption of various organic vapours of the porosity of fresh and coked H-MCM-22 zeolites. Microporous and Mesoporous Materials, 2009, 118, 473-479.	4.4	7
36	Using alkali metals to control reactivity and porosity during physical activation of demineralised kraft lignin. Carbon, 2009, 47, 1012-1017.	10.3	33

#	Article	IF	CITATIONS
37	New carbon materials with high porosity in the 1–7nm range obtained by chemical activation with phosphoric acid of resorcinol–formaldehyde aerogels. Carbon, 2009, 47, 1874-1877.	10.3	36
38	Low-Cost Adsorbents: Growing Approach to Wastewater Treatment—a Review. Critical Reviews in Environmental Science and Technology, 2009, 39, 783-842.	12.8	873
39	Reactivity and porosity development during pyrolysis and physical activation in CO2 or steam of kraft and hydrolytic lignins. Journal of Analytical and Applied Pyrolysis, 2008, 82, 264-271.	5.5	73
40	Evaluation of the thermal and mechanical stability of Si-MCM-41 and Ti-MCM-41 synthesised at room temperature. Microporous and Mesoporous Materials, 2008, 108, 283-293.	4.4	31
41	Influence of preparation conditions in the textural and chemical properties of activated carbons from a novel biomass precursor: The coffee endocarp. Bioresource Technology, 2008, 99, 7224-7231.	9.6	99
42	In vitro adsorption study of fluoxetine in activated carbons and activated carbon fibres. Fuel Processing Technology, 2008, 89, 549-555.	7.2	21
43	Production of activated carbons from coffee endocarp by CO2 and steam activation. Fuel Processing Technology, 2008, 89, 262-268.	7.2	149
44	Structure and catalytic activity of Al-MCM-48 materials synthesised at room temperature: Influence of the aluminium source and calcination conditions. Microporous and Mesoporous Materials, 2008, 114, 293-302.	4.4	16
45	Adsorption of toluene, methylcyclohexane and neopentane onÂsilica MCM-41. Adsorption, 2008, 14, 367-375.	3.0	25
46	Ordered Mesoporous Titanosilicate Materials Prepared at Room Temperature: Synthesis Conditions vs Structural Properties. Materials Science Forum, 2008, 587-588, 473-477.	0.3	1
47	Characterisation of Surface Ionisation and Adsorption of Phenol and 4-Nitrophenol on Non-Porous Carbon Blacks. Adsorption Science and Technology, 2008, 26, 827-841.	3.2	10
48	Influence of the synthesis conditions on the pore structure and stability of MCM-41 materials containing aluminium or titanium. Studies in Surface Science and Catalysis, 2007, 160, 567-574.	1.5	6
49	Adsorption of Aqueous Mercury(II) Species by Commercial Activated Carbon Fibres with and without Surface Modification. Adsorption Science and Technology, 2007, 25, 199-215.	3.2	11
50	Lignin – from natural adsorbent to activated carbon: A review. Bioresource Technology, 2007, 98, 2301-2312.	9.6	882
51	Use of n-nonane pre-adsorption for the determination of micropore volume of activated carbon aerogels. Carbon, 2007, 45, 1310-1313.	10.3	24
52	High micropore activated carbon prepared from polyetheretherketone. Carbon, 2007, 45, 2454-2455.	10.3	8
53	Effect of hydrothermal treatment on the structure, stability and acidity of Al containing MCM-41 and MCM-48 synthesised at room temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 310, 9-19.	4.7	21
54	Structural and catalytic properties of Ti–MCM-41 synthesised at room temperature up to high Ti content. Microporous and Mesoporous Materials, 2007, 100, 312-321.	4.4	67

#	Article	IF	CITATIONS
55	Interaction of water vapour at 298K with Al-MCM-41 materials synthesised at room temperature. Microporous and Mesoporous Materials, 2007, 103, 82-93.	4.4	27
56	Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas. Journal of Analytical and Applied Pyrolysis, 2007, 79, 128-135.	5.5	295
57	Production of activated carbon cloth with controlled structure and porosity from a new precursor. Journal of Porous Materials, 2007, 14, 181-190.	2.6	13
58	Characterization of Micro-Mesoporous Materials from Nitrogen and Toluene Adsorption:  Experiment and Modeling. Langmuir, 2006, 22, 513-516.	3.5	79
59	Influence of Degassing Temperature on the Performance of Carbon Molecular Sieves for Separations Involving O2, N2, CO2, and CH4. Energy & Fuels, 2006, 20, 766-770.	5.1	10
60	Chemical Characterization of Activated Carbon Fibers and Activated Carbons. Journal of Chemical Education, 2006, 83, 436.	2.3	21
61	On the Lo/If Range of the TVFM. Adsorption Science and Technology, 2006, 24, 205-214.	3.2	6
62	New acrylic monolithic carbon molecular sieves for O2/N2 and CO2/CH4 separations. Carbon, 2006, 44, 1158-1165.	10.3	33
63	Application of different equations to adsorption isotherms of phenolic compounds on activated carbons prepared from cork. Carbon, 2006, 44, 2422-2429.	10.3	81
64	Carbon molecular sieves from PET for separations involving CH4, CO2, O2 and N2. Applied Surface Science, 2006, 252, 5948-5952.	6.1	43
65	Controlling the micropore size of activated carbons for the treatment of fuels and combustion gases. Applied Surface Science, 2006, 252, 5953-5956.	6.1	14
66	Mercury removal from aqueous solution and flue gas by adsorption on activated carbon fibres. Applied Surface Science, 2006, 252, 6046-6052.	6.1	58
67	Comparative study of Al-MCM materials prepared at room temperature with different aluminium sources and by some hydrothermal methods. Microporous and Mesoporous Materials, 2006, 92, 270-285.	4.4	50
68	Pore size control in activated carbons obtained by pyrolysis under different conditions of chemically impregnated cork. Journal of Analytical and Applied Pyrolysis, 2006, 75, 120-127.	5.5	50
69	Adsorption of n-pentane and iso-octane for the evaluation of the porosity of dealuminated BEA zeolites. Microporous and Mesoporous Materials, 2005, 81, 259-267.	4.4	25
70	From commercial textile fibres to activated carbon fibres: Chemical transformations. Materials Chemistry and Physics, 2005, 93, 100-108.	4.0	45
71	Calculation of Pore Size Distributions in Low-k Films. AIP Conference Proceedings, 2005, , .	0.4	0
72	Separating Surface and Solvent Effects and the Notion of Critical Adsorption Energy in the Adsorption of Phenolic Compounds by Activated Carbons. Langmuir, 2005, 21, 11863-11869.	3.5	31

#	Article	IF	CITATIONS
73	Microwave heating as a novel method for introducing molecular sieve properties into activated carbon fibres. Carbon, 2004, 42, 227-229.	10.3	23
74	Preparation and modification of activated carbon fibres by microwave heating. Carbon, 2004, 42, 1315-1320.	10.3	142
75	Preparation of Activated Carbons from Cork by Physical Activation in Carbon Dioxide. Adsorption Science and Technology, 2003, 21, 669-681.	3.2	30
76	Pore structural characteristics of mesostructured materials prepared under different conditions. Studies in Surface Science and Catalysis, 2002, 144, 363-370.	1.5	4
77	Scanning electron microscopy of activated carbons prepared from commercial acrylic textile fibres. Fuel Processing Technology, 2002, 77-78, 381-387.	7.2	7
78	Catalytic and adsorption properties of Al- and Ti-MCM-41 synthesized at room temperature. Reaction Kinetics and Catalysis Letters, 2002, 77, 83-90.	0.6	14
79	Thermal treatments of activated carbon fibres using a microwave furnace. Microporous and Mesoporous Materials, 2001, 47, 243-252.	4.4	93
80	Adsorption of nitrogen, neopentane, n-hexane, benzene and methanol for the evaluation of pore sizes in silica grades of MCM-41. Microporous and Mesoporous Materials, 2001, 47, 323-337.	4.4	108
81	Reference data for the adsorption of methanol on carbon materials. Carbon, 2001, 39, 193-200.	10.3	22
82	Reference data for the adsorption of dichloromethane on carbon materials. Carbon, 2001, 39, 465-472.	10.3	12
83	Preparation of activated carbon fibres from acrylic textile fibres. Carbon, 2001, 39, 1543-1555.	10.3	161
84	Reference data for the adsorption of benzene on carbon materials. Carbon, 2000, 38, 465-474.	10.3	44
85	Application of the αs Method for Analysing Benzene, Dichloromethane and Methanol Isotherms Determined on Molecular Sieve and Superactivated Carbons. Studies in Surface Science and Catalysis, 2000, 128, 323-331.	1.5	9
86	Stabilization of MCM-41 by Pyrolytic Carbon Deposition. Langmuir, 2000, 16, 9103-9105.	3.5	14
87	Evaluation of the Stoeckli method for the estimation of micropore size distributions of activated charcoal cloths. Carbon, 1999, 37, 647-656.	10.3	34
88	Preparation of activated carbon "membranes" by physical and chemical actication of cork. Carbon, 1999, 37, 515-517.	10.3	23
89	Evaluation of the Stability of Pure Silica MCM-41 toward Water Vapor. Langmuir, 1999, 15, 8895-8901.	3.5	63
90	Influence of surface ionization on the adsorption of aqueous mercury chlorocomplexes by activated carbons. Carbon, 1998, 36, 11-17.	10.3	28

#	Article	IF	CITATIONS
91	Influence of surface ionization on the adsorption of aqueous zinc species by activated carbons. Carbon, 1997, 35, 403-410.	10.3	60
92	Molecular sieve behaviour of activated carbons. Carbon, 1995, 33, 1307-1312.	10.3	17
93	Numerical simulation of surface ionisation and specific adsorption on a two-site model of a carbon surface. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 2179.	1.7	22
94	Adsorption of Water Vapour by Microporous Magnesium Oxide. Studies in Surface Science and Catalysis, 1994, , 497-506.	1.5	3
95	Î ³ -Irradiation of Activated Charcoal Cloth. Studies in Surface Science and Catalysis, 1994, 87, 661-669.	1.5	1
96	Infrared and quantitative adsorption study of coordinatively unsaturated cations on magnesium hydroxide. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 579.	1.7	10
97	On the Dubinin-Serpinski Equation. Adsorption Science and Technology, 1993, 10, 63-73.	3.2	5
98	Adsorption of water vapor by non-porous carbons. Carbon, 1992, 30, 201-205.	10.3	34
99	Ex-hydroxide magnesium oxide as a model adsorbent for investigation of micropore filling mechanisms. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 185.	1.7	22
100	Adsorption of Methanol and Water by Charcoal Cloth. Studies in Surface Science and Catalysis, 1991, 62, 341-346.	1.5	1
101	Microstructure of Ex-Hydroxide Magnesium Oxide & Products of Rehydration. Studies in Surface Science and Catalysis, 1991, , 635-643.	1.5	1
102	Physical adsorption of gases by microporous carbons. Colloids and Surfaces, 1991, 58, 385-400.	0.9	53
103	Evolution of micropore structure of activated charcoal cloth. Carbon, 1991, 29, 499-506.	10.3	50
104	Boron trifluoride initiated polymerisation of isobutene in the micropores of activated charcoal cloth. Carbon, 1991, 29, 507-513.	10.3	13
105	The Adsorption of Water Vapour by Microporous Solids. Studies in Surface Science and Catalysis, 1991, 62, 685-692.	1.5	14
106	Determination of gas chromatographic plate heights for hydrocarbon adsorption by superactivated carbon AX21. Journal of Chromatography A, 1990, 518, 53-58.	3.7	6
107	Gas Chromatographic Study of Specific Physisorption by Activated Carbons. Adsorption Science and Technology, 1989, 6, 93-102.	3.2	9
108	Effect of Temperature on Neopentane Isotherms Determined on Non-Porous Non-Graphitized Carbon Black (Elftex). Adsorption Science and Technology, 1989, 6, 103-109.	3.2	2

#	Article	IF	CITATIONS
109	Desorption of n-nonane from microporous carbons. Colloids and Surfaces, 1989, 37, 1-13.	0.9	24
110	Virial Analysis of the Adsorption of Trifluorochloromethane and Methane by Microporous Carbons and Zeolites. Adsorption Science and Technology, 1989, 6, 136-146.	3.2	3
111	Multilayer adsorption of nitrogen and alkanes by non-porous carbons and silicas. Pure and Applied Chemistry, 1989, 61, 1835-1840.	1.9	45
112	Adsorption of neopentane by nonporous carbons and silicas. Langmuir, 1988, 4, 740-743.	3.5	47
113	Assessment of Microporosity. Studies in Surface Science and Catalysis, 1988, 39, 77-87.	1.5	22
114	A New Method for The Determination of Micropore Size Distributions. Studies in Surface Science and Catalysis, 1988, 39, 89-100.	1.5	14
115	Adsorption of nitrogen by porous and non-porous carbons. Carbon, 1987, 25, 59-68.	10.3	164
116	Standard nitrogen adsorption data for nonporous carbons. Carbon, 1987, 25, 769-770.	10.3	104
117	Gas chromatographic study of microporous carbons. Journal of Chromatography A, 1987, 406, 139-144.	3.7	47
118	The adsorption of nitrogen and water vapour by carbon-coated precipitated silica. Colloids and Surfaces, 1986, 21, 9-15.	0.9	18
119	The Adsorption of Nitrogen on Precipitated and Pyrogenic Silicas. Adsorption Science and Technology, 1984, 1, 31-39.	3.2	14
120	Infrared study of the adsorption of 1602, 160180 and 1802 on Cr2O3. Journal of the Chemical Society Faraday Transactions I, 1983, 79, 2425.	1.0	45
121	Application of the Frenkel-Halsey-Hill equation to multilayer isotherms of nitrogen on oxides at 77K. Studies in Surface Science and Catalysis, 1982, 10, 403-410.	1.5	13
122	Reactivity of Cork and Lignin for the Production of Activated Carbons. Materials Science Forum, 0, 587-588, 618-622.	0.3	5
123	Development of Monolithic Materials with and without a Binder with Carbon Molecular Sieving Properties. Materials Science Forum, 0, 587-588, 805-809.	0.3	0
124	Textural Development of Activated Carbon Prepared from Recycled PET with Different Chemical Activation Agents. Materials Science Forum, 0, 587-588, 753-757.	0.3	11
125	Different Ways to Regenerate an Activated Carbon: Comparison between an Activated Carbon from Cork and a Commercial Carbon. Materials Science Forum, 0, 587-588, 844-848.	0.3	1
126	Activated Carbons Prepared from Natural and Synthetic Raw Materials with Potential Applications in Gas Separations. Advanced Materials Research, 0, 107, 1-7.	0.3	14

#	Article	IF	CITATIONS
127	Structural Characterisation and Mechanical Stability of Titanium Substituted Mesoporous Materials. Materials Science Forum, 0, 636-637, 136-141.	0.3	0
128	Hydrothermal Stability of Ordered Mesoporous Titanosilicate Materials Prepared at Room Temperature. Advanced Materials Research, 0, 107, 63-70.	0.3	1