Xavier Raynaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6733420/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scenario modelling of carbon mineralization in <scp>3D</scp> soil architecture at the microscale: Toward an accessibility coefficient of organic matter for bacteria. European Journal of Soil Science, 2022, 73, .	3.9	10
2	Impacts of nutrient addition on soil carbon and nitrogen stoichiometry and stability in globally-distributed grasslands. Biogeochemistry, 2022, 159, 353-370.	3.5	5
3	Topsoil characteristics of forests and lawns along an urban–rural gradient in the Paris region (France). Soil Use and Management, 2021, 37, 749-761.	4.9	4
4	Temperature and soil management effects on carbon fluxes and priming effect intensity. Soil Biology and Biochemistry, 2021, 153, 108103.	8.8	33
5	Spatial heterogeneity in nitrification and soil exploration by trees favour source–sink dynamics in a humid savanna: A modelling approach. Functional Ecology, 2021, 35, 976-988.	3.6	4
6	Fertilized graminoids intensify negative drought effects on grassland productivity. Global Change Biology, 2021, 27, 2441-2457.	9.5	39
7	Modeling the biomass allocation of tree resprout in a fire-prone savanna. Ecological Modelling, 2021, 448, 109527.	2.5	1
8	Soil properties as key predictors of global grassland production: Have we overlooked micronutrients?. Ecology Letters, 2021, 24, 2713-2725.	6.4	28
9	Broader phenology of pollinator activity and higher plant reproductive success in an urban habitat compared to a rural one. Ecology and Evolution, 2020, 10, 11607-11621.	1.9	10
10	Below-ground competition alters attractiveness of an insect-pollinated plant to pollinators. AoB PLANTS, 2020, 12, plaa022.	2.3	6
11	Comparison of Environmental and Culture-Derived Bacterial Communities through 16S Metabarcoding: A Powerful Tool to Assess Media Selectivity and Detect Rare Taxa. Microorganisms, 2020, 8, 1129.	3.6	14
12	Plant-pollinator interactions on green roofs are mediated by substrate characteristics and plant community composition. Acta Oecologica, 2020, 105, 103559.	1.1	9
13	The ecology of heterogeneity: soil bacterial communities and C dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190249.	4.0	76
14	Effects of Mineral Nitrogen Partitioning on Tree–Grass Coexistence in West African Savannas. Ecosystems, 2019, 22, 1676-1690.	3.4	6
15	Unravelling the effects of plant species diversity and aboveground litter input on soil bacterial communities. Geoderma, 2018, 317, 1-7.	5.1	37
16	Role of substrate properties in the provision of multifunctional green roof ecosystem services. Applied Soil Ecology, 2018, 123, 464-468.	4.3	20
17	Contrasting effects of grasses and trees on microbial N-cycling in an African humid savanna. Soil Biology and Biochemistry, 2018, 117, 153-163.	8.8	38
18	Recognizing Patterns: Spatial Analysis of Observed Microbial Colonization on Root Surfaces. Frontiers in Environmental Science, 2018, 6, .	3.3	38

Xavier Raynaud

#	Article	IF	CITATIONS
19	Trace element concentrations along a gradient of urban pressure in forest and lawn soils of the Paris region (France). Science of the Total Environment, 2017, 598, 938-948.	8.0	78
20	Multifunctionality is affected by interactions between green roof plant species, substrate depth, and substrate type. Ecology and Evolution, 2017, 7, 2357-2369.	1.9	41
21	Does competition with windâ€pollinated species alter <i><scp>E</scp>chium plantagineum</i> 's attractiveness to a common pollinator <i><scp>B</scp>ombus terrestris</i> ?. Ecological Entomology, 2017, 42, 617-628.	2.2	3
22	Modelling facilitation or competition within a root system: importance of the overlap of root depletion and accumulation zones. Plant and Soil, 2017, 419, 97-111.	3.7	17
23	Modeling the inter-individual variability of single-stemmed plant development. , 2016, , .		1
24	Explore less to control more: why and when should plants limit the horizontal exploration of soil by their roots?. Oikos, 2016, 125, 1110-1120.	2.7	8
25	Evolution of nutrient acquisition: when space matters. Functional Ecology, 2016, 30, 283-294.	3.6	10
26	Competition with wind-pollinated plant species alters floral traits of insect-pollinated plant species. Scientific Reports, 2015, 5, 13345.	3.3	8
27	Modeling the effect of soil meso- and macropores topology on the biodegradation of a soluble carbon substrate. Advances in Water Resources, 2015, 83, 123-136.	3.8	54
28	Spatial Ecology of Bacteria at the Microscale in Soil. PLoS ONE, 2014, 9, e87217.	2.5	312
29	Regulation of soil organic C mineralisation at the pore scale. FEMS Microbiology Ecology, 2013, 86, 26-35.	2.7	54
30	Ecosystem engineering, environmental decay and environmental states of landscapes. Oikos, 2013, 122, 591-600.	2.7	22
31	Plant Preference for Ammonium versus Nitrate: A Neglected Determinant of Ecosystem Functioning?. American Naturalist, 2012, 180, 60-69.	2.1	155
32	Litter inputs and plant interactions affect nectar sugar content. Journal of Ecology, 2011, 99, 828-837.	4.0	41
33	Negative priming effect on mineralization in a soil free of vegetation for 80 years. European Journal of Soil Science, 2010, 61, 384-391.	3.9	70
34	Soil properties are key determinants for the development of exudate gradients in a rhizosphere simulation model. Soil Biology and Biochemistry, 2010, 42, 210-219.	8.8	55
35	Plants May Alter Competition by Modifying Nutrient Bioavailability in Rhizosphere: A Modeling Approach. American Naturalist, 2008, 171, 44-58.	2.1	95
36	Soil microbial loop and nutrient uptake by plants: a test using a coupled C:N model of plant–microbial interactions. Plant and Soil, 2006, 287, 95-116.	3.7	58

Xavier Raynaud

#	Article	IF	CITATIONS
37	Symmetry of belowground competition in a spatially explicit model of nutrient competition. Ecological Modelling, 2005, 189, 447-453.	2.5	21
38	Grass populations control nitrification in savanna soils. Functional Ecology, 2004, 18, 605-611.	3.6	105
39	SOIL CHARACTERISTICS PLAY A KEY ROLE IN MODELING NUTRIENT COMPETITION IN PLANT COMMUNITIES. Ecology, 2004, 85, 2200-2214.	3.2	71