
Christophe Goze-Bac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6732533/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic interactions in carbon nanostructures. Carbon, 2002, 40, 1825-1842.	10.3	118
2	CSF1R Inhibition Reduces Microglia Proliferation, Promotes Tissue Preservation and Improves Motor Recovery After Spinal Cord Injury. Frontiers in Cellular Neuroscience, 2018, 12, 368.	3.7	79
3	High-Purity Diamagnetic Single-Wall Carbon Nanotube Buckypaper. Chemistry of Materials, 2007, 19, 2982-2986.	6.7	39
4	Correlation of in vivo and ex vivo1H-MRI with histology in two severities of mouse spinal cord injury. Frontiers in Neuroanatomy, 2015, 9, 24.	1.7	38
5	Molecular Dynamics and Phase Transition in One-Dimensional Crystal of C ₆₀ Encapsulated Inside Single Wall Carbon Nanotubes. ACS Nano, 2009, 3, 3878-3883.	14.6	33
6	A Novel Translational Model of Spinal Cord Injury in Nonhuman Primate. Neurotherapeutics, 2018, 15, 751-769.	4.4	32
7	Hydrogenation of C ₆₀ in Peapods: Physical Chemistry in Nano Vessels. Journal of Physical Chemistry C, 2009, 113, 8583-8587.	3.1	29
8	Structural properties of carbon nanotubes derived from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mrow /><mml:mn>13</mml:mn></mml:mrow </mml:msup>C NMR. Physical Review B, 2011, 84, .</mml:math 	3.2	28
9	Metallic properties of Li-intercalated carbon nanotubes investigated by NMR. Physical Review B, 2006, 74, .	3.2	26
10	A Combination of Ex vivo Diffusion MRI and Multiphoton to Study Microglia/Monocytes Alterations after Spinal Cord Injury. Frontiers in Aging Neuroscience, 2017, 9, 230.	3.4	24
11	Signal modeling of an MRI ribbon solenoid coil dedicated to spinal cord injury investigations. Journal of Sensors and Sensor Systems, 2016, 5, 137-145.	0.9	23
12	Longitudinal Magnetic Resonance Imaging Analysis and Histological Characterization after Spinal Cord Injury in Two Mouse Strains with Different Functional Recovery: Gliosis as a Key Factor. Journal of Neurotrauma, 2018, 35, 2924-2940.	3.4	15
13	The magnetic field homogeneity of coils by means of the space harmonics suppression of the current density distribution. Journal of Sensors and Sensor Systems, 2016, 5, 401-408.	0.9	11
14	Communications: Nanomagnetic shielding: High-resolution NMR in carbon allotropes. Journal of Chemical Physics, 2010, 132, 021102.	3.0	9
15	Flip-flop method: A new T1-weighted flow-MRI for plants studies. PLoS ONE, 2018, 13, e0194845.	2.5	8
16	Electronic properties of Cs-intercalated single-walled carbon nanotubes derived from nuclear magnetic resonance. New Journal of Physics, 2011, 13, 053045.	2.9	7
17	High-resolution 13C nuclear magnetic resonance evidence of phase transition of Rb,Cs-intercalated single-walled nanotubes. Journal of Applied Physics, 2011, 110, .	2.5	5
18	Homogenous static magnetic field coils dedicated to portable nuclear magnetic resonance for agronomic studies. Journal of Sensors and Sensor Systems, 2018, 7, 227-234.	0.9	4

#	Article	IF	CITATIONS
19	Properties of Cs-intercalated single wall carbon nanotubes investigated by 133Cs Nuclear Magnetic resonance. Carbon, 2012, 50, 5292-5300.	10.3	3
20	Electromagnetic Properties of Inner Double Walled Carbon Nanotubes Investigated by Nuclear Magnetic Resonance. Journal of Nanomaterials, 2013, 2013, 1-6.	2.7	3
21	Homogenous nuclear magnetic resonance probe using the space harmonics suppression method. Journal of Sensors and Sensor Systems, 2020, 9, 117-125.	0.9	3
22	Multiscale NMR investigations of two anatomically contrasted genotypes of sorghum under watered conditions and during drought stress. Magnetic Resonance in Chemistry, 2019, 57, 749-756.	1.9	2
23	Assessing Histology Structures by ExÂVivo MR Microscopy and Exploring the Link Between MRM-Derived Radiomic Features and Histopathology in Ovarian Cancer. Frontiers in Oncology, 2021, 11, 771848.	2.8	2
24	Properties of K,Rb-intercalated C60 encapsulated inside carbon nanotubes called peapods derived from nuclear magnetic resonance. Journal of Applied Physics, 2015, 118, 114305.	2.5	1