
Salvador Aznar Benitah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6730664/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning up an aged clock: Circadian clock regulation in metabolism and aging. Translational Medicine of Aging, 2022, 6, 1-13.	1.3	3
2	The Rho guanosine nucleotide exchange factors Vav2 and Vav3 modulate epidermal stem cell function. Oncogene, 2022, 41, 3341-3354.	5.9	3
3	Mammalian PERIOD2 regulates H2A.Z incorporation in chromatin to orchestrate circadian negative feedback. Nature Structural and Molecular Biology, 2022, 29, 549-562.	8.2	4
4	Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature, 2022, 607, 593-603.	27.8	102
5	The central clock suffices to drive the majority of circulatory metabolic rhythms. Science Advances, 2022, 8, .	10.3	11
6	Bmal1-knockout mice exhibit reduced cocaine-seeking behaviour and cognitive impairments. Biomedicine and Pharmacotherapy, 2022, 153, 113333.	5.6	7
7	A unique subset of glycolytic tumour-propagating cells drives squamous cell carcinoma. Nature Metabolism, 2021, 3, 182-195.	11.9	17
8	Combined statistical modeling enables accurate mining of circadian transcription. NAR Genomics and Bioinformatics, 2021, 3, lqab031.	3.2	6
9	Repression of endogenous retroviruses prevents antiviral immune response and is required for mammary gland development. Cell Stem Cell, 2021, 28, 1790-1804.e8.	11.1	10
10	Collecting mouse livers for transcriptome analysis of daily rhythms. STAR Protocols, 2021, 2, 100539.	1.2	3
11	Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms. Science Advances, 2021, 7, eabi7828.	10.3	50
12	Lipid metabolism in metastasis and therapy. Current Opinion in Systems Biology, 2021, 28, 100401.	2.6	10
13	Dietary palmitic acid promotes a prometastatic memory via Schwann cells. Nature, 2021, 599, 485-490.	27.8	126
14	Molecular Connections Between Circadian Clocks and Aging. Journal of Molecular Biology, 2020, 432, 3661-3679.	4.2	52
15	VAV2 signaling promotes regenerative proliferation in both cutaneous and head and neck squamous cell carcinoma. Nature Communications, 2020, 11, 4788.	12.8	27
16	Circadian Regulation of Adult Stem Cell Homeostasis and Aging. Cell Stem Cell, 2020, 26, 817-831.	11.1	49
17	L1CAM links regeneration to metastasis. Nature Cancer, 2020, 1, 22-24.	13.2	0
18	Alterations to the circadian clock make brain tumours vulnerable. Nature, 2019, 574, 337-338.	27.8	4

SALVADOR AZNAR BENITAH

#	Article	IF	CITATIONS
19	Defining the Independence of the Liver Circadian Clock. Cell, 2019, 177, 1448-1462.e14.	28.9	213
20	BMAL1-Driven Tissue Clocks Respond Independently to Light to Maintain Homeostasis. Cell, 2019, 177, 1436-1447.e12.	28.9	107
21	Epigenetic control of IL-23 expression in keratinocytes is important for chronic skin inflammation. Nature Communications, 2018, 9, 1420.	12.8	88
22	Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene, 2018, 37, 2285-2301.	5.9	332
23	MSK1 regulates luminal cell differentiation and metastatic dormancy in ER+ breast cancer. Nature Cell Biology, 2018, 20, 211-221.	10.3	98
24	Loss of G9a preserves mutation patterns but increases chromatin accessibility, genomic instability and aggressiveness in skin tumours. Nature Cell Biology, 2018, 20, 1400-1409.	10.3	35
25	Identity Noise and Adipogenic Traits Characterize Dermal Fibroblast Aging. Cell, 2018, 175, 1575-1590.e22.	28.9	168
26	The contributions of cancer cell metabolism to metastasis. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	58
27	Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature, 2017, 541, 41-45.	27.8	962
28	Aged Stem Cells Reprogram Their Daily Rhythmic Functions to Adapt to Stress. Cell, 2017, 170, 678-692.e20.	28.9	189
29	Circadian Reprogramming in the Liver Identifies Metabolic Pathways of Aging. Cell, 2017, 170, 664-677.e11.	28.9	277
30	Expression Analysis of the Stem Cell Marker Pw1/Peg3 Reveals a CD34 Negative Progenitor Population in the Hair Follicle. Stem Cells, 2017, 35, 1015-1027.	3.2	13
31	Metastatic-initiating cells and lipid metabolism. Cell Stress, 2017, 1, 110-114.	3.2	6
32	Loss of Dnmt3a and Dnmt3b does not affect epidermal homeostasis but promotes squamous transformation through PPAR-γ. ELife, 2017, 6, .	6.0	45
33	Dnmt3a and Dnmt3b Associate with Enhancers to Regulate Human Epidermal Stem Cell Homeostasis. Cell Stem Cell, 2016, 19, 491-501.	11.1	170
34	Epigenetic control of adult stem cell function. Nature Reviews Molecular Cell Biology, 2016, 17, 643-658.	37.0	188
35	The epigenetics of tumour initiation: cancer stem cells and their chromatin. Current Opinion in Genetics and Development, 2016, 36, 8-15.	3.3	53
36	Cbx4 maintains the epithelial lineage identity and cell proliferation in the developing stratified epithelium. Journal of Cell Biology, 2016, 212, 77-89.	5.2	57

#	Article	IF	CITATIONS
37	Dissecting the Calcium-Induced Differentiation of Human Primary Keratinocytes Stem Cells by Integrative and Structural Network Analyses. PLoS Computational Biology, 2015, 11, e1004256.	3.2	20
38	Epigenetic regulation of adult stem cell function. FEBS Journal, 2015, 282, 1589-1604.	4.7	28
39	Zrf1 is required to establish and maintain neural progenitor identity. Genes and Development, 2014, 28, 182-197.	5.9	29
40	Circadian control of tissue homeostasis and adult stem cells. Current Opinion in Cell Biology, 2014, 31, 8-15.	5.4	40
41	Stem Cell Epigenetics: Looking Forward. Cell Stem Cell, 2014, 14, 706-709.	11.1	1
42	Human Epidermal Stem Cell Function Is Regulated by Circadian Oscillations. Cell Stem Cell, 2013, 13, 745-753.	11.1	117
43	ZRF1 controls oncogene-induced senescence through the INK4-ARF locus. Oncogene, 2013, 32, 2161-2168.	5.9	30
44	Regenerating the skin: a task for the heterogeneous stem cell pool and surrounding niche. Nature Reviews Molecular Cell Biology, 2013, 14, 737-748.	37.0	131
45	RYBP and Cbx7 Define Specific Biological Functions of Polycomb Complexes in Mouse Embryonic Stem Cells. Cell Reports, 2013, 3, 60-69.	6.4	183
46	A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nature Cell Biology, 2013, 15, 978-990.	10.3	1,566
47	Defining an epidermal stem cell epigenetic network. Nature Cell Biology, 2012, 14, 652-653.	10.3	4
48	Chromatin regulators in mammalian epidermis. Seminars in Cell and Developmental Biology, 2012, 23, 897-905.	5.0	36
49	From oncogene to tumor suppressor. Cell Cycle, 2012, 11, 1757-1764.	2.6	44
50	Nonoverlapping Functions of the Polycomb Group Cbx Family of Proteins in Embryonic Stem Cells. Cell Stem Cell, 2012, 10, 47-62.	11.1	294
51	Polycomb in Stem Cells: PRC1 Branches Out. Cell Stem Cell, 2012, 11, 16-21.	11.1	60
52	Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Nature Structural and Molecular Biology, 2012, 19, 1257-1265.	8.2	229
53	MacroH2A1 Regulates the Balance between Self-Renewal and Differentiation Commitment in Embryonic and Adult Stem Cells. Molecular and Cellular Biology, 2012, 32, 1442-1452.	2.3	86
54	Stem cells in ectodermal development. Journal of Molecular Medicine, 2012, 90, 783-790.	3.9	24

#	Article	IF	CITATIONS
55	Skin-cancer stem cells outwitted. Nature, 2011, 478, 329-330.	27.8	8
56	The circadian molecular clock creates epidermal stem cell heterogeneity. Nature, 2011, 480, 209-214.	27.8	273
57	Regulation of Human Epidermal Stem Cell Proliferation and Senescence Requires Polycomb- Dependent and -Independent Functions of Cbx4. Cell Stem Cell, 2011, 9, 233-246.	11.1	128
58	E-box-independent regulation of transcription and differentiation by MYC. Nature Cell Biology, 2011, 13, 1443-1449.	10.3	37
59	Rac1 Deletion Causes Thymic Atrophy. PLoS ONE, 2011, 6, e19292.	2.5	8
60	Jarid2 regulates mouse epidermal stem cell activation and differentiation. EMBO Journal, 2011, 30, 3635-3646.	7.8	68
61	The opposing transcriptional functions of Sin3a and c-Myc are required to maintain tissue homeostasis. Nature Cell Biology, 2011, 13, 1395-1405.	10.3	57
62	The RNA–Methyltransferase Misu (NSun2) Poises Epidermal Stem Cells to Differentiate. PLoS Genetics, 2011, 7, e1002403.	3.5	160
63	Gluteal Augmentation With Cryopreserved Fat. Aesthetic Surgery Journal, 2010, 30, 211-216.	1.6	14
64	MYC in mammalian epidermis: how can an oncogene stimulate differentiation?. Nature Reviews Cancer, 2008, 8, 234-242.	28.4	144
65	A Critical Role for Rac1 in Tumor Progression of Human Colorectal Adenocarcinoma Cells. American Journal of Pathology, 2008, 172, 156-166.	3.8	52
66	Epidermal Deletion of Rac1 Causes Stem Cell Depletion, Irrespective of whether Deletion Occurs during Embryogenesis or Adulthood. Journal of Investigative Dermatology, 2007, 127, 1555-1557.	0.7	14
67	Epidermal stem cells in skin homeostasis and cutaneous carcinomas. Clinical and Translational Oncology, 2007, 9, 760-766.	2.4	4
68	Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1. Journal of Cell Biology, 2006, 172, 139-149.	5.2	108
69	Role of LIM Kinases in Normal and Psoriatic Human Epidermis. Molecular Biology of the Cell, 2006, 17, 1888-1896.	2.1	44
70	Rho GTPase expression in tumourigenesis: Evidence for a significant link. BioEssays, 2005, 27, 602-613.	2.5	211
71	Suprabasal α5β1 integrin expression stimulates formation of epidermal squamous cell carcinomas without disrupting TGFβ signaling or inducing spindle cell tumors. Molecular Carcinogenesis, 2005, 44, 60-66.	2.7	15
72	Stem Cell Depletion Through Epidermal Deletion of Rac1. Science, 2005, 309, 933-935.	12.6	243

#	Article	IF	CITATIONS
73	Rho GTPases in human cancer: an unresolved link to upstream and downstream transcriptional regulation. Biochimica Et Biophysica Acta: Reviews on Cancer, 2004, 1705, 121-132.	7.4	82
74	Rho GTPases: potential candidates for anticancer therapy. Cancer Letters, 2004, 206, 181-191.	7.2	106
75	ROCK and Nuclear Factor-l̂®â€"dependent Activation of Cyclooxygenase-2 by Rho GTPases: Effects on Tumor Growth and Therapeutic Consequences. Molecular Biology of the Cell, 2003, 14, 3041-3054.	2.1	76
76	STAT5a Activation Mediates the Epithelial to Mesenchymal Transition Induced by Oncogenic RhoA Molecular Biology of the Cell, 2003, 14, 40-53.	2.1	39
77	Cell Stress and MEKK1-mediated c-Jun Activation Modulate NFήB Activity and Cell Viability. Molecular Biology of the Cell, 2002, 13, 2933-2945.	2.1	92
78	Rho signals to cell growth and apoptosis. Cancer Letters, 2001, 165, 1-10.	7.2	288
79	Searching new targets for anticancer drug design: The families of Ras and Rho GTPases and their effectors. Progress in Molecular Biology and Translational Science, 2001, 67, 193-234.	1.9	36
80	Simultaneous Tyrosine and Serine Phosphorylation of STAT3 Transcription Factor Is Involved in Rho A GTPase Oncogenic Transformation. Molecular Biology of the Cell, 2001, 12, 3282-3294.	2.1	101
81	Apoptosis Induced by Rac GTPase Correlates with Induction of FasL and Ceramides Production. Molecular Biology of the Cell, 2000, 11, 4347-4358.	2.1	69