
Radostin Danev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/673066/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics of GLP-1R peptide agonist engagement are correlated with kinetics of G protein activation. Nature Communications, 2022, 13, 92.	12.8	30
2	A structural basis for amylin receptor phenotype. Science, 2022, 375, eabm9609.	12.6	28
3	Structural and functional diversity among agonist-bound states of the GLP-1 receptor. Nature Chemical Biology, 2022, 18, 256-263.	8.0	24
4	Structure and dynamics of the CGRP receptor in apo and peptide-bound forms. Science, 2021, 372, .	12.6	57
5	Cryo-EM performance testing of hardware and data acquisition strategies. Microscopy (Oxford,) Tj ETQq1 1 0.784	4314 rgBT 1.5	/Qyerlock 1
6	Structures of the human cholecystokinin 1 (CCK1) receptor bound to Gs and Gq mimetic proteins provide insight into mechanisms of G protein selectivity. PLoS Biology, 2021, 19, e3001295.	5.6	41
7	Structure and dynamics of semaglutide- and taspoglutide-bound GLP-1R-Gs complexes. Cell Reports, 2021, 36, 109374.	6.4	27
8	Routine sub-2.5 à cryo-EM structure determination of GPCRs. Nature Communications, 2021, 12, 4333.	12.8	37
9	Evolving cryo-EM structural approaches for GPCR drug discovery. Structure, 2021, 29, 963-974.e6.	3.3	29
10	Positive allosteric mechanisms of adenosine A1 receptor-mediated analgesia. Nature, 2021, 597, 571-576.	27.8	84
11	Cryo-EM structure of the dual incretin receptor agonist, peptide-19, in complex with the glucagon-like peptide-1 receptor. Biochemical and Biophysical Research Communications, 2021, 578, 84-90.	2.1	14
12	Activation of the GLP-1 receptor by a non-peptidic agonist. Nature, 2020, 577, 432-436.	27.8	119
13	Differential GLP-1R Binding and Activation by Peptide and Non-peptide Agonists. Molecular Cell, 2020, 80, 485-500.e7.	9.7	111
14	Spectral DQE of the Volta phase plate. Ultramicroscopy, 2020, 218, 113079.	1.9	21
15	Structure and dynamics of the active Gs-coupled human secretin receptor. Nature Communications, 2020, 11, 4137.	12.8	46
16	Cryo-electron microscopy structure of the glucagon receptor with a dual-agonist peptide. Journal of Biological Chemistry, 2020, 295, 9313-9325.	3.4	31
17	Structure and Dynamics of Adrenomedullin Receptors AM ₁ and AM ₂ Reveal Key Mechanisms in the Control of Receptor Phenotype by Receptor Activity-Modifying Proteins. ACS Pharmacology and Translational Science, 2020, 3, 263-284.	4.9	71
18	Toward a Structural Understanding of Class B GPCR Peptide Binding and Activation. Molecular Cell, 2020, 77, 656-668.e5.	9.7	92

#	Article	IF	CITATIONS
19	Phase-plate cryo-EM structure of the Widom 601 CENP-A nucleosome core particle reveals differential flexibility of the DNA ends. Nucleic Acids Research, 2020, 48, 5735-5748.	14.5	27
20	Fast and accurate defocus modulation for improved tunability of cryo-EM experiments. IUCrJ, 2020, 7, 566-574.	2.2	6
21	Electrons receive individual treatment with electron-event representation. IUCrJ, 2020, 7, 780-781.	2.2	1
22	Improved applicability and robustness of fast cryo-electron tomography data acquisition. Journal of Structural Biology, 2019, 208, 107-114.	2.8	70
23	Electrons see the light. Nature Methods, 2019, 16, 966-967.	19.0	1
24	Cryo-Electron Microscopy Methodology: Current Aspects and Future Directions. Trends in Biochemical Sciences, 2019, 44, 837-848.	7.5	176
25	Single Particle Imaging with the Volta Phase Plate. Microscopy and Microanalysis, 2019, 25, 7-8.	0.4	1
26	Cryo-EM structures of the archaeal PAN-proteasome reveal an around-the-ring ATPase cycle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 534-539.	7.1	65
27	Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor–Gs complex. Nature, 2018, 555, 121-125.	27.8	263
28	Volta phase plate data collection facilitates image processing and cryo-EM structure determination. Journal of Structural Biology, 2018, 202, 191-199.	2.8	24
29	Structure of the adenosine-bound human adenosine A1 receptor–Gi complex. Nature, 2018, 558, 559-563.	27.8	274
30	Subtomogram analysis using the Volta phase plate. Journal of Structural Biology, 2017, 197, 94-101.	2.8	71
31	Phase-plate cryo-EM structure of a class B GPCR–G-protein complex. Nature, 2017, 546, 118-123.	27.8	424
32	Revisiting the Structure of Hemoglobin and Myoglobin with Cryo-Electron Microscopy. Journal of Molecular Biology, 2017, 429, 2611-2618.	4.2	22
33	Morphologies of synaptic protein membrane fusion interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9110-9115.	7.1	51
34	Charting Molecular Landscapes Using Cryo-Electron Tomography. Microscopy Today, 2017, 25, 26-31.	0.3	0
35	Biological Sciences Tutorial: CryoEM with Phase Plates. Microscopy and Microanalysis, 2017, 23, 1398-1399.	0.4	1
36	Expanding the boundaries of cryo-EM with phase plates. Current Opinion in Structural Biology, 2017, 46, 87-94.	5.7	87

#	Article	IF	CITATIONS
37	Cryo-EM structure of haemoglobin at 3.2 Ã determined with the Volta phase plate. Nature Communications, 2017, 8, 16099.	12.8	211
38	Phase Contrast Single Particle Analysis at Atomic Resolutions. Microscopy and Microanalysis, 2017, 23, 816-817.	0.4	0
39	Exploring Cellular Morphology of Thermoplasma acidophilum by Cryo-Electron Tomography with Volta Phase Plate. Microscopy and Microanalysis, 2017, 23, 1234-1235.	0.4	1
40	Towards High Resolution in Cryo-Electron Tomography Subtomogram Analysis. Microscopy and Microanalysis, 2017, 23, 812-813.	0.4	1
41	Using the Volta phase plate with defocus for cryo-EM single particle analysis. ELife, 2017, 6, .	6.0	109
42	1S-B2-1Single Particle Analysis Applications of the Volta Phase Plate. Microscopy (Oxford, England), 2017, 66, i9-i9.	1.5	1
43	Cryo-EM single particle analysis with the Volta phase plate. ELife, 2016, 5, .	6.0	141
44	Solution Conformations of Peroxiredoxins Visualised by Volta Phase Plates. Microscopy and Microanalysis, 2016, 22, 70-71.	0.4	2
45	Optimizing the FEI Volta Phase Plate for Efficient and Artefact-free Data Acquisition. Microscopy and Microanalysis, 2016, 22, 58-59.	0.4	1
46	Single Particle Analysis with the Volta Phase Plate. Microscopy and Microanalysis, 2016, 22, 82-83.	0.4	1
47	High-resolution Imaging of Reconstituted Protein-DNA Complexes Using Phase Plate Electron Cryo Microscopy. Microscopy and Microanalysis, 2016, 22, 68-69.	0.4	0
48	3.9 Ã structure of the nucleosome core particle determined by phase-plate cryo-EM. Nucleic Acids Research, 2016, 44, 8013-8019.	14.5	78
49	Volta phase plate cryo-EM of the small protein complex Prx3. Nature Communications, 2016, 7, 10534.	12.8	64
50	Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science, 2016, 351, 969-972.	12.6	493
51	Practical Aspects and Usage Tips for the Volta Phase Plate. Microscopy and Microanalysis, 2015, 21, 1391-1392.	0.4	1
52	In situ studies of cellular architecture by Electron Cryo-Tomography with Volta Phase Plate. Microscopy and Microanalysis, 2015, 21, 1835-1836.	0.4	1
53	Combination of Different Techniques in Cryo-Electron Tomography with a Volta Phase Plate. Microscopy and Microanalysis, 2015, 21, 1393-1394.	0.4	3
54	A molecular census of 26 <i>S</i> proteasomes in intact neurons. Science, 2015, 347, 439-442.	12.6	287

#	Article	IF	CITATIONS
55	Electron cryotomography of vitrified cells with a Volta phase plate. Journal of Structural Biology, 2015, 190, 143-154.	2.8	140
56	Effect of fringe-artifact correction on sub-tomogram averaging from Zernike phase-plate cryo-TEM. Journal of Structural Biology, 2015, 191, 299-305.	2.8	10
57	Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15635-15640.	7.1	448
58	Automated Cryo-tomography and Single Particle Analysis with a New Type of Phase Plate. Microscopy and Microanalysis, 2014, 20, 206-207.	0.4	5
59	Phase-Contrast Cryo-Electron Tomography of Primary Cultured Neuronal Cells. Microscopy and Microanalysis, 2014, 20, 208-209.	0.4	0
60	Challenges in Phase Plate Product Development. Microscopy and Microanalysis, 2014, 20, 218-219.	0.4	2
61	Phase Contrast Cryo-Electron Tomography and Single Particle Analysis with a New Phase Plate. Microscopy and Microanalysis, 2014, 20, 232-233.	0.4	1
62	Artifact Correction for Zernike Phase-Plate Cryo-Electron Tomography. Microscopy and Microanalysis, 2014, 20, 234-235.	0.4	2
63	Minimizing electrostatic charging of an aperture used to produce in-focus phase contrast in the TEM. Ultramicroscopy, 2013, 135, 6-15.	1.9	18
64	Non-acid-fastness in Mycobacterium tuberculosis ΔkasB mutant correlates with the cell envelope electron density. Tuberculosis, 2012, 92, 351-357.	1.9	22
65	Optimizing the phase shift and the cut-on periodicity of phase plates for TEM. Ultramicroscopy, 2011, 111, 1305-1315.	1.9	48
66	Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid. Biomaterials, 2011, 32, 4306-4316.	11.4	193
67	Zernike Phase Contrast Cryo-Electron Microscopy and Tomography for Structure Determination at Nanometer and Subnanometer Resolutions. Structure, 2010, 18, 903-912.	3.3	118
68	Immunolocalization of multiple membrane proteins on a carbon replica with STEM and EDX. Ultramicroscopy, 2010, 110, 366-374.	1.9	17
69	A 3.5-nm Structure of Rat TRPV4 Cation Channel Revealed by Zernike Phase-contrast Cryoelectron Microscopy. Journal of Biological Chemistry, 2010, 285, 11210-11218.	3.4	78
70	Phase Plates for Transmission Electron Microscopy. Methods in Enzymology, 2010, 481, 343-369.	1.0	49
71	Strain-Induced Crystallization of Fractionated Natural Rubber from Fresh Latex. Zairyo/Journal of the Society of Materials Science, Japan, 2009, 58, 5-10.	0.2	2
72	High-contrast imaging of plastic-embedded tissues by phase contrast electron microscopy. Journal of Electron Microscopy, 2009, 58, 35-45.	0.9	3

#	Article	IF	CITATIONS
73	Envelope-type lipid nanoparticles incorporating a short PEG-lipid conjugate for improved control of intracellular trafficking and transgene transcription. Biomaterials, 2009, 30, 4806-4814.	11.4	41
74	Phase-plate electron microscopy: a novel imaging tool to reveal close-to-life nano-structures. Biophysical Reviews, 2009, 1, 37-42.	3.2	28
75	Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process. Biomaterials, 2009, 30, 2940-2949.	11.4	133
76	Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy. Ultramicroscopy, 2009, 109, 312-325.	1.9	116
77	An artificial virus-like nano carrier system: enhanced endosomal escape of nanoparticles via synergistic action of pH-sensitive fusogenic peptide derivatives. Analytical and Bioanalytical Chemistry, 2008, 391, 2717-2727.	3.7	111
78	Single particle analysis based on Zernike phase contrast transmission electron microscopy. Journal of Structural Biology, 2008, 161, 211-218.	2.8	96
79	Growth Process and Molecular Packing of a Self-assembled Lipid Nanotube:  Phase-Contrast Transmission Electron Microscopy and XRD Analyses. Langmuir, 2008, 24, 709-713.	3.5	47
80	Decaarginine-PEG-Artificial Lipid/DNA Complex for Gene Delivery: Nanostructure and Transfection Efficiency. Journal of Nanoscience and Nanotechnology, 2008, 8, 2308-2315.	0.9	25
81	Transition from Nanotubes to Micelles with Increasing Concentration in Dilute Aqueous Solution of PotassiumN-Acyl Phenylalaninate. Langmuir, 2006, 22, 8472-8477.	3.5	32
82	Self-assembly of nano-sized arrays on highly oriented thin films of poly(tetrafluoroethylene). Polymer, 2006, 47, 951-955.	3.8	11
83	Intact Carboxysomes in a Cyanobacterial Cell Visualized by Hilbert Differential Contrast Transmission Electron Microscopy. Journal of Bacteriology, 2006, 188, 805-808.	2.2	74
84	In vivo subcellular ultrastructures recognized with Hilbert differential contrast transmission electron microscopy. Journal of Electron Microscopy, 2005, 54, 79-84.	0.9	54
85	Application of Phase Contrast Transmission Microscopic Methods to Polymer Materials. Macromolecules, 2005, 38, 7884-7886.	4.8	35
86	Complex Observation in Electron Microscopy: IV. Reconstruction of Complex Object Wave from Conventional and Half Plane Phase Plate Image Pair. Journal of the Physical Society of Japan, 2004, 73, 2718-2724.	1.6	42
87	Theory of asymmetrical phase plates and its application to TEM. Seibutsu Butsuri, 2003, 43, S117.	0.1	0
88	Complex Observation in Electron Microscopy. II. Direct Visualization of Phases and Amplitudes of Exit Wave Functions. Journal of the Physical Society of Japan, 2001, 70, 696-702.	1.6	36
89	Electric charging of thin films measured using the contrast transfer function. Ultramicroscopy, 2001, 87, 45-54.	1.9	24
90	Transmission electron microscopy with Zernike phase plate. Ultramicroscopy, 2001, 88, 243-252.	1.9	260