Jun-Fei Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6730190/publications.pdf Version: 2024-02-01

IUN-FELLIANC

#	Article	IF	CITATIONS
1	Scalable synthesis of mesoporous FeS2 nanorods as high-performance anode materials for sodium-ion batteries. Rare Metals, 2022, 41, 21-28.	7.1	26
2	Nb2O5 nanoparticles embedding in graphite hybrid as a high-rate and long-cycle anode for lithium-ion batteries. Rare Metals, 2022, 41, 814-821.	7.1	28
3	A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity. Nano-Micro Letters, 2022, 14, 50.	27.0	59
4	Economic synthesis of sub-micron brick-like Al-MOF with designed pore distribution for lithium-ion battery anodes with high initial Coulombic efficiency and cycle stability. Dalton Transactions, 2022, 51, 6787-6794.	3.3	3
5	BN white graphene well-dispersed solar salt nanofluids with significant improved thermal properties for concentrated solar power plants. Solar Energy Materials and Solar Cells, 2022, 245, 111875.	6.2	4
6	Controlled synthesis of α-Fe2O3@rGO core–shell nanocomposites as anode for lithium ion batteries. Journal of Materials Science, 2021, 56, 664-676.	3.7	4
7	Constructing a Graphene-Encapsulated Amorphous/Crystalline Heterophase NiFe Alloy by Microwave Thermal Shock for Boosting the Oxygen Evolution Reaction. ACS Catalysis, 2021, 11, 12284-12292.	11.2	93
8	Porous TiNb ₂ O ₇ @N-C as Anode Materials for Lithium-Ion Batteries with Ultrahigh-Rate Performance. Journal of Physical Chemistry C, 2021, 125, 23960-23967.	3.1	11
9	Traditional Chinese medicine residue-derived micropore-rich porous carbon frameworks as efficient sulfur hosts for high-performance lithium–sulfur batteries. Dalton Transactions, 2021, 51, 129-135.	3.3	13
10	Vacuumâ€Dried 3D Holey Graphene Frameworks Enabling High Mass Loading and Fast Charge Transfer for Advanced Batteries. Energy Technology, 2020, 8, 1901002.	3.8	8
11	Available photo-charging integrated device constructed with dye-sensitized solar cells and lithium-ion battery. New Journal of Chemistry, 2020, 44, 791-796.	2.8	14
12	Bioâ€Inspired Isoalloxazine Redox Moieties for Rechargeable Aqueous Zincâ€Ion Batteries. Chemistry - an Asian Journal, 2020, 15, 1290-1295.	3.3	31
13	Covalent Selenium Embedded in Hierarchical Carbon Nanofibers for Ultra-High Areal Capacity Li-Se Batteries. IScience, 2020, 23, 100919.	4.1	40
14	Ultra-high Areal Capacity Realized in Three-Dimensional Holey Graphene/SnO2 Composite Anodes. IScience, 2019, 19, 728-736.	4.1	40
15	Facile and scalable preparation of 3D SnO ₂ /holey graphene composite frameworks for stable lithium storage at a high mass loading level. Inorganic Chemistry Frontiers, 2019, 6, 1367-1373.	6.0	19
16	Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science, 2017, 356, 599-604.	12.6	1,229
17	Freeâ€Standing SnO ₂ /Nitrogenâ€Doped Graphene Films as Highâ€Performance Binderâ€Free Electrodes for Flexible Lithiumâ€Ion Batteries. Energy Technology, 2015, 3, 1225-1232.	3.8	11
18	Facile fabrication of 3D SnO ₂ /nitrogen-doped graphene aerogels for superior lithium storage. RSC Advances, 2015, 5, 68822-68828.	3.6	4

Jun-Fei Liang

#	Article	IF	CITATIONS
19	Facile and Universal Superhydrophobic Modification to Fabricate Waterborne, Multifunctional Nacre-Mimetic Films with Excellent Stability. ACS Applied Materials & Interfaces, 2014, 6, 20597-20602.	8.0	13
20	Scalable and facile preparation of graphene aerogel for air purification. RSC Advances, 2014, 4, 4843.	3.6	47
21	Enhanced Microwave Absorption Property of Reduced Graphene Oxide (RGO)-MnFe ₂ O ₄ Nanocomposites and Polyvinylidene Fluoride. ACS Applied Materials & Interfaces, 2014, 6, 7471-7478.	8.0	694
22	One-pot synthesis of hematite@graphene core@shell nanostructures for superior lithium storage. Nanoscale, 2013, 5, 9684.	5.6	30
23	Deposition SnO ₂ /Nitrogen-Doped Graphene Nanocomposites on the Separator: A New Type of Flexible Electrode for Energy Storage Devices. ACS Applied Materials & Interfaces, 2013, 5, 12148-12155.	8.0	66
24	A highly sensitive and selective aptasensor based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein PDGF-BB. Analyst, The, 2013, 138, 1726.	3.5	55
25	Well-graphitized graphene as photoinduced charge transport channel for improving the photocatalytic activity of AgBr. New Journal of Chemistry, 2013, 37, 1797.	2.8	4
26	Facile one-step synthesis of a 3D macroscopic SnO2–graphene aerogel and its application as a superior anode material for Li-ion batteries. RSC Advances, 2013, 3, 11489.	3.6	44
27	Flexible Free-Standing Graphene/SnO ₂ Nanocomposites Paper for Li-Ion Battery. ACS Applied Materials & Interfaces, 2012, 4, 5742-5748.	8.0	145
28	One-Step In situ Synthesis of SnO ₂ /Graphene Nanocomposites and Its Application As an Anode Material for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 454-459.	8.0	217
29	Electrochemical sensing of l-histidine based on structure-switching DNAzymes and gold nanoparticle–graphenenanosheet composites. Chemical Communications, 2011, 47, 5476-5478.	4.1	100