Fatih Omer Ilday

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6729740/publications.pdf Version: 2024-02-01

FATH OMED LIDAY

#	Article	IF	CITATIONS
1	Self-Similar Evolution of Parabolic Pulses in a Laser. Physical Review Letters, 2004, 92, 213902.	7.8	773
2	Ablation-cooled material removal with ultrafast bursts of pulses. Nature, 2016, 537, 84-88.	27.8	596
3	Soliton–similariton fibre laser. Nature Photonics, 2010, 4, 307-311.	31.4	456
4	Highly nonlinear As–S–Se glasses for all-optical switching. Optics Letters, 2002, 27, 119.	3.3	348
5	Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nature Photonics, 2013, 7, 897-901.	31.4	267
6	High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform. Applied Physics Letters, 2005, 87, 103501.	3.3	205
7	Femtosecond fiber lasers with pulse energies above 10?nJ. Optics Letters, 2005, 30, 1888.	3.3	182
8	Generation of 50-fs, 5-nJ pulses at 103 μm from a wave-breaking-free fiber laser. Optics Letters, 2003, 28, 1365.	3.3	173
9	Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching. IEEE Photonics Technology Letters, 2002, 14, 822-824.	2.5	167
10	All-fiber all-normal dispersion laser with a fiber-based Lyot filter. Optics Letters, 2010, 35, 1296.	3.3	158
11	83 W, 31 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining. Optics Express, 2011, 19, 17647.	3.4	141
12	High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror. Optics Letters, 2002, 27, 1531.	3.3	132
13	Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control. Optics Express, 2002, 10, 1497.	3.4	131
14	Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser. Optics Letters, 2003, 28, 660.	3.3	126
15	Generation of 36-femtosecond pulses from a ytterbium fiber laser. Optics Express, 2003, 11, 3550.	3.4	111
16	In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon. Nature Photonics, 2017, 11, 639-645.	31.4	101
17	Highly stable ultrabroadband mid-IR optical parametric chirped-pulse amplifier optimized for superfluorescence suppression. Optics Letters, 2009, 34, 1639.	3.3	96
18	Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors. Nature Photonics, 2019, 13, 251-256.	31.4	88

#	Article	IF	CITATIONS
19	Generation of parabolic bound pulses from a Yb-fiber laser. Optics Express, 2006, 14, 6075.	3.4	78
20	Fiber delivery of femtosecond pulses from a Ti:sapphire laser. Optics Letters, 2001, 26, 1320.	3.3	72
21	Generation of sub-100-fs pulses at up to 200 MHz repetition rate from a passively mode-locked Yb-doped fiber laser. Optics Express, 2005, 13, 2716.	3.4	65
22	High-Repetition-Rate Ultrafast Fiber Lasers for Material Processing. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-12.	2.9	64
23	Controllable Raman-like nonlinearities from nonstationary, cascaded quadratic processes. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 376.	2.1	63
24	All-Fiber Low-Noise High-Power Femtosecond Yb-Fiber Amplifier System Seeded by an All-Normal Dispersion Fiber Oscillator. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 145-152.	2.9	63
25	Nonlinearity management: a route to high-energy soliton fiber lasers. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 470.	2.1	60
26	Generation of 287 W, 55 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system. Optics Letters, 2008, 33, 2473.	3.3	60
27	Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers. Optics Express, 2011, 19, 10986.	3.4	57
28	Long-wavelength continuum generation about the second dispersion zero of a tapered fiber. Optics Letters, 2002, 27, 1558.	3.3	55
29	Intensity noise of mode-locked fiber lasers. Optics Letters, 2009, 34, 2516.	3.3	55
30	Femtosecond laser written waveguides deep inside silicon. Optics Letters, 2017, 42, 3028.	3.3	55
31	High-power Yb-based all-fiber laser delivering 300  fs pulses for high-speed ablation-cooled material removal. Optics Letters, 2018, 43, 535.	3.3	55
32	Fibre-based source of femtosecond pulses tunable from 1.0 to 1.3â€[micro sign]m. Electronics Letters, 2004, 40, 1523.	1.0	54
33	1ÂmJ pulse bursts from a Yb-doped fiber amplifier. Optics Letters, 2012, 37, 2586.	3.3	51
34	Fiber amplification of pulse bursts up to 20 μJpulse energy at 1 kHz repetition rate. Optics Letters, 202 3383.	11,36, 3.3	45
35	Possibility of self-similar pulse evolution in a Ti:sapphire laser. Optics Express, 2004, 12, 2731.	3.4	44
36	High-power high-repetition-rate single-mode Er-Yb-doped fiber laser system. Optics Express, 2012, 20, 9471.	3.4	42

#	Article	IF	CITATIONS
37	Generation of picosecond pulses directly from a 100ÂW, burst-mode, doping-managed Yb-doped fiber amplifier. Optics Letters, 2014, 39, 236.	3.3	41
38	Rich complex behaviour of self-assembled nanoparticles far from equilibrium. Nature Communications, 2017, 8, 14942.	12.8	40
39	Universality of dissipative self-assembly from quantum dots to human cells. Nature Physics, 2020, 16, 795-801.	16.7	39
40	3.5-GHz intra-burst repetition rate ultrafast Yb-doped fiber laser. Optics Communications, 2016, 366, 404-409.	2.1	38
41	Inâ€Volume Laser Direct Writing of Silicon—Challenges and Opportunities. Laser and Photonics Reviews, 2021, 15, 2100140.	8.7	38
42	Nano patterning of AISI 316L stainless steel with Nonlinear Laser Lithography: Sliding under dry and oil-lubricated conditions. Tribology International, 2016, 99, 67-76.	5.9	35
43	All-fiber-integrated soliton–similariton laser with in-line fiber filter. Optics Letters, 2012, 37, 3489.	3.3	32
44	Burst-mode thulium all-fiber laser delivering femtosecond pulses at a 1  GHz intra-burst repetition rate. Optics Letters, 2017, 42, 3808.	3.3	32
45	220-fs erbium-ytterbium:glass laser mode locked by a broadband low-loss silicon/germanium saturable absorber. Optics Letters, 2005, 30, 329.	3.3	31
46	Diffraction-limited, 10-W, 5-ns, 100-kHz, all-fiber laser at 155  μm. Optics Letters, 2014, 39, 2695.	3.3	31
47	Microjoule-energy, 1 MHz repetition rate pulses from all-fiber-integrated nonlinear chirped-pulse amplifier. Optics Letters, 2010, 35, 959.	3.3	30
48	Burst-mode Yb-doped fiber amplifier system optimized for low-repetition-rate operation. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 900.	2.1	29
49	Doping management for high-power fiber lasers: 100 W, few-picosecond pulse generation from an all-fiber-integrated amplifier. Optics Letters, 2012, 37, 3042.	3.3	28
50	Direct control of mode-locking states of a fiber laser. Optica, 2016, 3, 1312.	9.3	28
51	Sub-50Âfs Yb-doped laser with anomalous-dispersion photonic crystal fiber. Optics Letters, 2013, 38, 956.	3.3	27
52	Pulse fidelity control in a 20-î¼ J sub-200-fs monolithic Yb-fiber amplifier. Laser Physics, 2011, 21, 1329-1335.	1.2	26
53	Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser. Nature Communications, 2019, 10, 2683.	12.8	21
54	Amplified spontaneous emission in high-power burst-mode fiber lasers. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 2462.	2.1	20

#	Article	IF	CITATIONS
55	Development of a Fiber Laser with Independently Adjustable Properties for Optical Resolution Photoacoustic Microscopy. Scientific Reports, 2016, 6, 38674.	3.3	18
56	Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation. Photonics Research, 2017, 5, 750.	7.0	18
57	Nonlinear laser lithography to control surface properties of stainless steel. CIRP Annals - Manufacturing Technology, 2015, 64, 193-196.	3.6	17
58	175 fs-long pulses from a high-power single-mode Er-doped fiber laser at 1550 nm. Optics Communications, 2017, 403, 381-384.	2.1	17
59	Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery. Applied Physics Letters, 2012, 100, 101104.	3.3	15
60	NLL-Assisted Multilayer Graphene Patterning. ACS Omega, 2018, 3, 1546-1554.	3.5	15
61	All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser. Applied Physics Letters, 2015, 107, .	3.3	14
62	Cavity-enhanced optical parametric chirped-pulse amplification. Optics Letters, 2006, 31, 637.	3.3	13
63	Simulations and experiments showing the origin of multiwavelength mode locking in femtosecond, Yb-fiber lasers. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 1668.	2.1	11
64	Frequency shifting with local nonlinearity management in nonuniformly poled quadratic nonlinear materials. Optics Letters, 2004, 29, 763.	3.3	10
65	Generation of 2- \$\$mu\$\$ μ J 410-fs pulses from a single-mode chirped-pulse fiber laser operating at 1550 nm. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	10
66	Application of a mode-locked fiber laser for highly time resolved broadband absorption spectroscopy and laser-assisted breakdown on micro-plasmas. Journal Physics D: Applied Physics, 2012, 45, 245202.	2.8	9
67	Multiscale Self-Assembly of Silicon Quantum Dots into an Anisotropic Three-Dimensional Random Network. Nano Letters, 2016, 16, 1942-1948.	9.1	9
68	Demonstration of a cavity-enhanced optical parametric chirped-pulse amplification system. Optics Letters, 2011, 36, 1206.	3.3	8
69	Semianalytic theory of self-similar optical propagation and mode locking using a shape-adaptive model pulse. Physical Review A, 2011, 83, .	2.5	8
70	Towards high-performance optical master oscillators for energy recovery linacs. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 557, 299-304.	1.6	7
71	Broadly tunable carrier envelope phase stable optical parametric amplifier pumped by a monolithic ytterbium fiber amplifier. Optics Letters, 2009, 34, 2799.	3.3	7
72	Fiber laser-microscope system for femtosecond photodisruption of biological samples. Biomedical Optics Express, 2012, 3, 605.	2.9	7

#	Article	IF	CITATIONS
73	Prediction of pulse-to-pulse intensity fluctuation characteristics of high power ultrafast fiber amplifiers. Applied Physics Letters, 2014, 105, 011111.	3.3	7
74	Phase Noise Characteristics of Fiber Lasers as Potential Ultra-Stable Master Oscillators. , 0, , .		6
75	Discrete Similariton and Dissipative Soliton Modelocking for Energy Scaling Ultrafast Thin-Disk Laser Oscillators. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-12.	2.9	6
76	The alignment of nematic liquid crystal by the Ti layer processed by nonlinear laser lithography. Liquid Crystals, 2018, 45, 1265-1271.	2.2	5
77	Stabilized Optical Fiber Links for the XFEL. , 0, , .		4
78	Automatic feedback control of an Er-doped fiber laser with an intracavity loss modulator. Optics Letters, 2005, 30, 1066.	3.3	4
79	Ansatz from nonlinear optics applied to trapped Bose-Einstein condensates. Physical Review A, 2007, 75,	2.5	4
80	Tailored Design of Mode-Locking Dynamics for Low-Noise Frequency-Comb Generation. Physical Review Applied, 2018, 10, .	3.8	4
81	Turbulent times. Nature Photonics, 2013, 7, 767-769.	31.4	3
82	All-fiber Yb-doped laser mode-locked by nanotubes. , 2013, , .		3
83	Development of a rapid-scan fiber-integrated terahertz spectrometer. Optical and Quantum Electronics, 2014, 46, 495-503.	3.3	3
84	Focus issue introduction: Advanced Solid-State Lasers (ASSL) 2014. Optics Express, 2015, 23, 8170.	3.4	3
85	Mode-locking dissected. Nature Physics, 2020, 16, 504-505.	16.7	3
86	Progress in Large-Scale Femtosecond Timing Distribution and RF-Synchronization. , 0, , .		2
87	Timing distribution and RF-synchronization with mode-locked lasers. , 0, , .		2
88	Ultra-low timing-jitter passively mode-locked fiber lasers for long-distance timing synchronization. , 2006, , .		2
89	Theoretical analysis of doping management. , 2013, , .		2
90	A novel fiber laser development for photoacoustic microscopy. Proceedings of SPIE, 2013, , .	0.8	2

#	Article	IF	CITATIONS
91	Non-thermal material and tissue processing with 100 MHz and 500 MHz repetition rate bursts. , 2013, , .		2
92	Balancing gain narrowing with self phase modulation: 100-fs, 800-nJ from an all-fiber-integrated Yb amplifier. , 2013, , .		2
93	High-speed, thermal damage-free ablation of brain tissue with femtosecond pulse bursts. , 2015, , .		2
94	All-fiber burst mode laser system integrated with OCT for cataract surgery. , 2015, , .		2
95	Theoretical analysis of doping management and its effects on power scaling. Turkish Journal of Electrical Engineering and Computer Sciences, 2016, 24, 2336-2348.	1.4	2
96	Focus issue introduction: Advanced Solid-State Lasers (ASSL) 2015. Optics Express, 2016, 24, 5674.	3.4	2
97	Pulse Shaping for a Long-Distance Optical Synchronization System. IEICE Transactions on Electronics, 2007, E90-C, 450-456.	0.6	2
98	Computer-generated holograms embedded in bulk silicon with nonlinear laser lithography. , 2016, , .		2
99	High-energy femtosecond fiber lasers. , 2004, 5335, 253.		1
100	Theory of the self-similar laser oscillator. , 2006, , .		1
101	Intracavity optical trapping with Ytterbium doped fiber ring laser. , 2013, , .		1
102	33-fs Yb-fiber laser comb locked to Cs-atomic clock. , 2013, , .		1
103	Generation of 1.2-nJ, 62-fs, chirp-free pulses directly from a Yb-doped fiber oscillator. , 2015, , .		1
104	Generation of dissipative solitons in normal-dispersion Raman fiber laser. , 2015, , .		1
105	Laser-slicing of silicon with 3D nonlinear laser lithography. , 2017, , .		1
106	Ablation-cooled material removal at high speed with femtosecond pulse bursts. , 2015, , .		1
107	Micromachining with square-shaped 1 ns-long pulses from an all-fiber Yb-doped laser-amplifier system. , 2011, , .		1
108	Nonlinear chirped-pulse amplification of a soliton-similariton laser to ~1 ŵJ at 1550 nm. , 2012, , .		1

#	Article	IF	CITATIONS
109	Spectrally breathing femtosecond pulses from an Er-doped fiber laser. , 2008, , .		1
110	Nonlinear Laser Lithography for Enhanced Tribological Properties. , 2015, , .		1
111	Applying the principle of orthogonality of high dimensional random vectors to obtain high-density, large-volume 3D holographic display. , 2018, , .		1
112	Laser writing of nanostructures deep inside Gallium Arsenide (GaAs). , 2018, , .		1
113	Cavity-enhanced optical parametric chirped-pulse amplification. , 2006, , .		0
114	A balanced optical-RF phase detector. , 2006, , .		0
115	Soliton self-frequency shift from 1.03 μm to 1.55 μm and related timing jitter. , 2006, , .		0
116	Large Scale, Femtosecond Timing Distribution. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
117	All-fiber high-energy yb-doped fiber amplifier. , 2009, , .		0
118	Filterless all-normal dispersion fiber laser. , 2009, , .		0
119	All-normal-dispersion fiber lasers for frequency metrology. , 2011, , .		0
120	83 W, 1 ns, 3.1 MHz all-fiber laser for micromachining. , 2011, , .		0
121	Nonlinearity engineering of mode-locked fiber lasers: Similariton and soliton-similariton lasers. , 2011, , .		0
122	Repetition rate tuning of an ultrafast ytterbium doped fiber laser for terahertz time-domain spectroscopy. , 2013, , .		0
123	All-fiber nanosecond laser system generating supercontinuum spectrum for photoacoustic imaging. , 2013, , .		0
124	Sub-50 fs all-fiber Yb-doped laser with anomalous-dispersion photonic crystal fiber. , 2013, , .		0
125	Time- and position-dependent modeling of high-power low-repetition-rate Er-Yb-fiber amplifier. , 2013, ,		0
126	Physical model for subsurface silicon writing. , 2015, , .		0

#	Article	IF	CITATIONS
127	Highly stable periodic structures using nonlinear laser lithography. , 2015, , .		0
128	Nonlinearity management: From fiber oscillators to amplifiers. , 2015, , .		0
129	Ultrafast micromachining of Cu and Si at ultra-high repetition rates with pulse bursts. , 2015, , .		0
130	Holograms Deep Inside Silicon. , 2016, , .		0
131	All-fiber Combining Concepts in the Wavelength Range Around 2 µm. , 2016, , .		0
132	Single-mode spectral beam combining of high power Tm-doped fiber lasers with WDM cascades. , 2016, ,		0
133	Noise induced creation and annihilation of solitons in dispersion managed fiber oscillators. Proceedings of SPIE, 2017, , .	0.8	0
134	Optical waveguides written deep inside silicon by femtosecond laser. , 2017, , .		0
135	3.5-W, femtosecond chirped pulse amplification fiber laser system at 1560 nm. , 2017, , .		0
136	50-W, 1.6-GHz pulse repetition rate from a burst-mode Yb-doped fiber laser. , 2017, , .		0
137	Buried waveguides written deep inside silicon. , 2017, , .		0
138	Two-photon excitation of quantum dots in 3D via stacked fresnal hologram algorithm. , 2017, , .		0
139	Slicing Crystalline Silicon Wafer by Deep Subsurface Laser Processing and Selective Chemical Etching. , 2019, , .		0
140	Low-noise femtosecond Cherenkov fiber laser, continuously tunable across the entire red-green-blue spectral range. EPJ Web of Conferences, 2019, 205, 01002.	0.3	0
141	2-micron optical parametric chirped pulse amplifier for long-wavelength driven high harmonic generation. , 2008, , .		0
142	Demonstration of Cavity-Enhanced Optical Parametric Chirped-Pulse Amplification System at High Repetition Rate. , 2010, , .		0
143	Microjoule Pulse Energies at 1 MHz Repetition Rate from an All-Fiber Nonlinear Chirped-Pulse Amplifier. , 2010, , .		0
144	Laser oscillator with nonlinear saturable absorber: A pump to signal noise transfer function model. , 2011, , .		0

#	Article	IF	CITATIONS
145	Development and characterization of all-normal dispersion fiber laser for frequency comb generation. , 2011, , .		0
146	Semi-Analytic Theory of Similariton Amplifiers and Laser Oscillators Using a Shape-Adaptive Model Pulse. , 2011, , .		0
147	High energy dissipative Raman soliton laser through XPM stabilization. , 2015, , .		0
148	All-Fiber, Single-Mode Spectral Beam Combining of High Power Tm-Doped Fiber Lasers. , 2015, , .		0
149	Nonlinearity Management of Fiber Oscillator with Multiple Gain Segments. , 2015, , .		0
150	Influence of Pump Noise on Mode-locked Fiber Oscillators. , 2015, , .		0
151	Ultrafast Burst-Mode Fiber Lasers: Source Development and Material Processing. , 2015, , .		0
152	Intracavity Dissipative Four-Wave Mixing at Different Dispersion Regimes of an Ultrafast Fiber Laser. , 2016, , .		0
153	All-Fiber Laser Systems That Can Operate in Burst Mode. , 2016, , .		0
154	Multi-GHz Burst-Mode Fiber Lasers. , 2020, , .		0