## Joanne E Mcbane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6727768/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF              | CITATIONS         |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|
| 1  | Full-Length Glycosylated Gag of Murine Leukemia Virus Can Associate with the Viral Envelope as a Type<br>I Integral Membrane Protein. Journal of Virology, 2018, 92, .                                                            | 1.5             | 18                |
| 2  | Collagen-chitosan-laminin hydrogels for the delivery of insulin-producing tissue. Journal of Tissue<br>Engineering and Regenerative Medicine, 2016, 10, E397-E408.                                                                | 1.3             | 12                |
| 3  | High-throughput Functional Genomics Identifies Regulators of Primary Human Beta Cell<br>Proliferation. Journal of Biological Chemistry, 2016, 291, 4614-4625.                                                                     | 1.6             | 38                |
| 4  | Glyoxalase-1 overexpression in bone marrow cells reverses defective neovascularization in STZ-induced diabetic mice. Cardiovascular Research, 2014, 101, 306-316.                                                                 | 1.8             | 37                |
| 5  | Characterization of a degradable polar hydrophobic ionic polyurethane with circulating angiogenic cellsin vitro. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1159-1173.                                           | 1.9             | 1                 |
| 6  | Evaluation of a Collagen-Chitosan Hydrogel for Potential Use as a Pro-Angiogenic Site for Islet<br>Transplantation. PLoS ONE, 2013, 8, e77538.                                                                                    | 1.1             | 51                |
| 7  | Tissue Engineering a Small Diameter Vessel Substitute: Engineering Constructs with Select<br>Biomaterials and Cells. Current Vascular Pharmacology, 2012, 10, 347-360.                                                            | 0.8             | 26                |
| 8  | Differences in protein binding and cytokine release from monocytes on commercially sourced tissue culture polystyrene. Acta Biomaterialia, 2012, 8, 89-98.                                                                        | 4.1             | 17                |
| 9  | Co-culturing monocytes with smooth muscle cells improves cell distribution within a degradable polyurethane scaffold and reduces inflammatory cytokines. Acta Biomaterialia, 2012, 8, 488-501.                                    | 4.1             | 24                |
| 10 | Biodegradation and inÂvivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for<br>tissue engineering applications. Biomaterials, 2011, 32, 6034-6044.                                                      | 5.7             | 121               |
| 11 | Use of monocyte/endothelial cell co-cultures (in vitro) and a subcutaneous implant mouse model (in) Tj ETQq1 1<br>Biochemistry, 2011, 112, 3762-3772.                                                                             | 0.784314<br>1.2 | rgBT /Overd<br>19 |
| 12 | Differentiation of monocytes on a degradable, polar, hydrophobic, ionic polyurethane:<br>Two-dimensional films vs. three-dimensional scaffolds. Acta Biomaterialia, 2011, 7, 115-122.                                             | 4.1             | 21                |
| 13 | The effect of degradable polymer surfaces on co-cultures of monocytes and smooth muscle cells.<br>Biomaterials, 2011, 32, 3584-3595.                                                                                              | 5.7             | 42                |
| 14 | The effects of phorbol ester activation and reactive oxygen species scavengers on the<br>macrophageâ€mediated foreign body reaction to polyurethanes. Journal of Biomedical Materials<br>Research - Part A, 2009, 91A, 1150-1159. | 2.1             | 3                 |
| 15 | Effect of polyurethane chemistry and protein coating on monocyte differentiation towards a wound healing phenotype macrophage. Biomaterials, 2009, 30, 5497-5504.                                                                 | 5.7             | 57                |
| 16 | Effect of Phorbol Esters on the Macrophage-Mediated Biodegradation of Polyurethanes via Protein<br>Kinase C Activation and Other Pathways. Journal of Biomaterials Science, Polymer Edition, 2009, 20,<br>437-453.                | 1.9             | 11                |
| 17 | Is cell culture stressful? Effects of degradable and nondegradable culture surfaces on U937 cell function. BioTechniques, 2007, 42, 744-750.                                                                                      | 0.8             | 14                |
| 18 | The interaction between hydrolytic and oxidative pathways in macrophage-mediated polyurethane degradation Journal of Biomedical Materials Research - Part A, 2007, 82A, 984-994                                                   | 2.1             | 36                |

| #  | ARTICLE                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Role of protein kinase C in the monocyte-derived macrophage-mediated biodegradation of<br>polycarbonate-based polyurethanes. Journal of Biomedical Materials Research - Part A, 2005, 74A, 1-11. | 2.1 | 17        |