William A Prinz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6727660/publications.pdf

Version: 2024-02-01

73 papers 10,691 citations

44042 48 h-index 71 g-index

96 all docs 96 docs citations

96 times ranked 9725 citing authors

#	Article	IF	Citations
1	A Class of Membrane Proteins Shaping the Tubular Endoplasmic Reticulum. Cell, 2006, 124, 573-586.	13.5	1,005
2	The Role of the Thioredoxin and Glutaredoxin Pathways in Reducing Protein Disulfide Bonds in the Escherichia coliCytoplasm. Journal of Biological Chemistry, 1997, 272, 15661-15667.	1.6	562
3	A Class of Dynamin-like GTPases Involved in the Generation of the Tubular ER Network. Cell, 2009, 138, 549-561.	13.5	495
4	Mechanisms Determining the Morphology of the Peripheral ER. Cell, 2010, 143, 774-788.	13.5	460
5	Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. Journal of Cell Biology, 2009, 187, 525-536.	2.3	451
6	Membrane Proteins of the Endoplasmic Reticulum Induce High-Curvature Tubules. Science, 2008, 319, 1247-1250.	6.0	386
7	The functional universe of membrane contact sites. Nature Reviews Molecular Cell Biology, 2020, 21, 7-24.	16.1	386
8	Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature, 2005, 437, 154-158.	13.7	376
9	Bridging the gap: Membrane contact sites in signaling, metabolism, and organelle dynamics. Journal of Cell Biology, 2014, 205, 759-769.	2.3	370
10	The Reticulon and Dp1/Yop1p Proteins Form Immobile Oligomers in the Tubular Endoplasmic Reticulum. Journal of Biological Chemistry, 2008, 283, 18892-18904.	1.6	292
11	A role for oxysterol-binding protein–related protein 5 in endosomal cholesterol trafficking. Journal of Cell Biology, 2011, 192, 121-135.	2.3	270
12	Mutants Affecting the Structure of the Cortical Endoplasmic Reticulum in Saccharomyces cerevisiae. Journal of Cell Biology, 2000, 150, 461-474.	2.3	263
13	A Conserved Endoplasmic Reticulum Membrane Protein Complex (EMC) Facilitates Phospholipid Transfer from the ER to Mitochondria. PLoS Biology, 2014, 12, e1001969.	2.6	261
14	A conserved family of proteins facilitates nascent lipid droplet budding from the ER. Journal of Cell Biology, 2015, 211, 261-271.	2.3	249
15	Phosphatidic Acid Is a pH Biosensor That Links Membrane Biogenesis to Metabolism. Science, 2010, 329, 1085-1088.	6.0	239
16	Ltc1 is an ER-localized sterol transporter and a component of ER–mitochondria and ER–vacuole contacts. Journal of Cell Biology, 2015, 209, 539-548.	2.3	230
17	Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein–related proteins and phosphoinositides. Journal of Cell Biology, 2006, 173, 107-119.	2.3	229
18	Direct imaging reveals stable, micrometer-scale lipid domains that segregate proteins in live cells. Journal of Cell Biology, 2013, 202, 35-44.	2.3	214

#	Article	IF	CITATIONS
19	A conserved membrane-binding domain targets proteins to organelle contact sites. Journal of Cell Science, 2012, 125, 49-58.	1.2	206
20	The Diverse Functions of Oxysterol-Binding Proteins. Annual Review of Cell and Developmental Biology, 2010, 26, 157-177.	4.0	200
21	Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues. Journal of Cell Biology, 2009, 187, 889-903.	2.3	196
22	Lipid transfer and signaling at organelle contact sites: the tip of the iceberg. Current Opinion in Cell Biology, 2011, 23, 458-463.	2.6	182
23	Lipid droplet and peroxisome biogenesis occur at the same ER subdomains. Nature Communications, 2018, 9, 2940.	5.8	158
24	Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11952-11957.	3.3	151
25	Metabolic Response to Iron Deficiency in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2010, 285, 14823-14833.	1.6	148
26	Architecture of Lipid Droplets in Endoplasmic Reticulum Is Determined by Phospholipid Intrinsic Curvature. Current Biology, 2018, 28, 915-926.e9.	1.8	148
27	Weaving the Web of ER Tubules. Cell, 2011, 147, 1226-1231.	13.5	138
28	Sheets, ribbons and tubules â€" how organelles get their shape. Nature Reviews Molecular Cell Biology, 2007, 8, 258-264.	16.1	136
29	Membrane contact sites, gateways for lipid homeostasis. Current Opinion in Cell Biology, 2015, 33, 82-87.	2.6	130
30	ATP-binding Cassette (ABC) Transporters Mediate Nonvesicular, Raft-modulated Sterol Movement from the Plasma Membrane to the Endoplasmic Reticulum. Journal of Biological Chemistry, 2004, 279, 45226-45234.	1.6	124
31	Plasma membrane—endoplasmic reticulum contact sites regulate phosphatidylcholine synthesis. EMBO Reports, 2013, 14, 434-440.	2.0	107
32	The dynamin-like GTPase Sey1p mediates homotypic ER fusion in <i>S. cerevisiae</i> . Journal of Cell Biology, 2012, 197, 209-217.	2.3	104
33	ER-shaping proteins facilitate lipid exchange between the ER and mitochondria in <i>S. cerevisiae</i> Journal of Cell Science, 2012, 125, 4791-9.	1.2	103
34	Nonvesicular phospholipid transfer between peroxisomes and the endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15785-15790.	3.3	102
35	Lipid interaction of the C terminus and association of the transmembrane segments facilitate atlastin-mediated homotypic endoplasmic reticulum fusion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2146-54.	3.3	102
36	An inducible ER–Golgi tether facilitates ceramide transport to alleviate lipotoxicity. Journal of Cell Biology, 2017, 216, 131-147.	2.3	98

#	Article	IF	Citations
37	Organelle biogenesis in the endoplasmic reticulum. Nature Cell Biology, 2017, 19, 876-882.	4.6	94
38	Lipid Trafficking sans Vesicles: Where, Why, How?. Cell, 2010, 143, 870-874.	13.5	91
39	Lipid Homeostasis Is Maintained by Dual Targeting of the Mitochondrial PE Biosynthesis Enzyme to the ER. Developmental Cell, 2018, 44, 261-270.e6.	3.1	83
40	AtMic60 Is Involved in Plant Mitochondria Lipid Trafficking and Is Part of a Large Complex. Current Biology, 2016, 26, 627-639.	1.8	81
41	Mechanisms of nonvesicular lipid transport. Journal of Cell Biology, 2021, 220, .	2.3	81
42	Non-vesicular sterol transport in cells. Progress in Lipid Research, 2007, 46, 297-314.	5.3	80
43	The Budding Yeast Nuclear Envelope Adjacent to the Nucleolus Serves as a Membrane Sink during Mitotic Delay. Current Biology, 2012, 22, 1128-1133.	1.8	78
44	Sterol transporters at membrane contact sites regulate TORC1 and TORC2 signaling. Journal of Cell Biology, 2017, 216, 2679-2689.	2.3	75
45	A family of membrane-shaping proteins at ER subdomains regulates pre-peroxisomal vesicle biogenesis. Journal of Cell Biology, 2016, 215, 515-529.	2.3	74
46	Seipin and Nem1 establish discrete ER subdomains to initiate yeast lipid droplet biogenesis. Journal of Cell Biology, 2020, 219, .	2.3	68
47	Phosphatidylserine synthesis at membrane contact sites promotes its transport out of the ER. Journal of Lipid Research, 2017, 58, 553-562.	2.0	57
48	Membrane-bending proteins. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 278-291.	2.3	55
49	Calmodulin-driven Nuclear Entry: Trigger for Sex Determination and Terminal Differentiation. Journal of Biological Chemistry, 2009, 284, 12593-12597.	1.6	47
50	VPS13D promotes peroxisome biogenesis. Journal of Cell Biology, 2021, 220, .	2.3	47
51	Fat storage-inducing transmembrane (FIT or FITM) proteins are related to lipid phosphatase/phosphotransferase enzymes. Microbial Cell, 2018, 5, 88-103.	1.4	46
52	Cholesterol trafficking in the secretory and endocytic systems. Seminars in Cell and Developmental Biology, 2002, 13, 197-203.	2.3	40
53	Glycerolipid synthesis and lipid trafficking in plant mitochondria. FEBS Journal, 2017, 284, 376-390.	2.2	37
54	Sequences flanking the transmembrane segments facilitate mitochondrial localization and membrane fusion by mitofusin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9863-E9872.	3.3	34

#	Article	IF	CITATIONS
55	Vps13-like proteins provide phosphatidylethanolamine for GPI anchor synthesis in the ER. Journal of Cell Biology, 2022, 221, .	2.3	28
56	Determinants of Translocation and Folding of TreF, a Trehalase of Escherichia coli. Journal of Biological Chemistry, 2000, 275, 23439-23445.	1.6	24
57	The High Mobility Group Box Transcription Factor Nhp6Ap Enters the Nucleus by a Calmodulin-dependent, Ran-independent Pathway. Journal of Biological Chemistry, 2007, 282, 33743-33751.	1.6	23
58	Dynamics of Cholesterol Exchange in the Oxysterol Binding Protein Family. Journal of Molecular Biology, 2008, 378, 737-748.	2.0	22
59	Retinyl esters form lipid droplets independently of triacylglycerol and seipin. Journal of Cell Biology, 2021, 220, .	2.3	22
60	Multiple C2 domain–containing transmembrane proteins promote lipid droplet biogenesis and growth at specialized endoplasmic reticulum subdomains. Molecular Biology of the Cell, 2021, 32, 1147-1157.	0.9	20
61	The Protein Translocation Apparatus Contributes to Determining the Topology of an Integral Membrane Protein in Escherichia coli. Journal of Biological Chemistry, 1998, 273, 8419-8424.	1.6	19
62	Yeast FIT2 homolog is necessary to maintain cellular proteostasis and membrane lipid homeostasis. Journal of Cell Science, 2020, 133, .	1.2	15
63	Phosphatidylserine Is Involved in the Ferrichrome-induced Plasma Membrane Trafficking of Arn1 in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2010, 285, 39564-39573.	1.6	13
64	A Bridge to Understanding Lipid Droplet Growth. Developmental Cell, 2013, 24, 335-336.	3.1	12
65	The lipid trade. Nature Reviews Molecular Cell Biology, 2014, 15, 79-79.	16.1	9
66	Target of Rapamycin Complex 1 (TORC1), Protein Kinase A (PKA) and Cytosolic pH Regulate a Transcriptional Circuit for Lipid Droplet Formation. International Journal of Molecular Sciences, 2021, 22, 9017.	1.8	9
67	A firehose for phospholipids. Journal of Cell Biology, 2020, 219, .	2.3	8
68	Keeping FIT, storing fat: Lipid droplet biogenesis. Worm, 2016, 5, e1170276.	1.0	7
69	Endoplasmic reticulum stress affects the transport of phosphatidylethanolamine from mitochondria to the endoplasmic reticulum in S. cerevisiae. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1959-1967.	1.2	7
70	A cholesterol-sensing mechanism unfolds. Journal of Biological Chemistry, 2017, 292, 19974-19975.	1.6	3
71	ESCRTs got your Bac!. Cell, 2021, 184, 3591-3592.	13.5	3
72	Editorial overview: Cell organelles. Current Opinion in Cell Biology, 2014, 29, v-vi.	2.6	0

#	Article	lF	CITATIONS
73	The role of the Câ€terminus and transmembrane segments in facilitating atlastinâ€mediated endoplasmic reticulum fusion. FASEB Journal, 2013, 27, 1016.1.	0.2	О