
Yen-Ping Hsueh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6727306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of the Genome and Transcriptome of Cryptococcus neoformans var. grubii Reveals Complex RNA Expression and Microevolution Leading to Virulence Attenuation. PLoS Genetics, 2014, 10, e1004261.	3.5	336
2	Spores as Infectious Propagules of <i>Cryptococcus neoformans</i> . Infection and Immunity, 2009, 77, 4345-4355.	2.2	299
3	Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiology Reviews, 2008, 32, 1010-1032.	8.6	165
4	Nematode-Trapping Fungi Eavesdrop on Nematode Pheromones. Current Biology, 2013, 23, 83-86.	3.9	152
5	Sex-induced silencing defends the genome of <i>Cryptococcus neoformans</i> via RNAi. Genes and Development, 2010, 24, 2566-2582.	5.9	134
6	Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. ELife, 2017, 6, .	6.0	75
7	Recombination Hotspots Flank the Cryptococcus Mating-Type Locus: Implications for the Evolution of a Fungal Sex Chromosome. PLoS Genetics, 2006, 2, e184.	3.5	72
8	Orchestration of sexual reproduction and virulence by the fungal mating-type locus. Current Opinion in Microbiology, 2008, 11, 517-524.	5.1	66
9	G protein signaling governing cell fate decisions involves opposing Gα subunits inCryptococcus neoformans. Molecular Biology of the Cell, 2007, 18, 3237-3249.	2.1	64
10	A constitutively active GPCR governs morphogenic transitions in Cryptococcus neoformans. EMBO Journal, 2009, 28, 1220-1233.	7.8	63
11	Natural diversity in the predatory behavior facilitates the establishment of a robust model strain for nematode-trapping fungi. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6762-6770.	7.1	59
12	Gene Conversion Occurs within the Mating-Type Locus of Cryptococcus neoformans during Sexual Reproduction. PLoS Genetics, 2012, 8, e1002810.	3.5	54
13	Discovery of a Modified Tetrapolar Sexual Cycle in Cryptococcus amylolentus and the Evolution of MAT in the Cryptococcus Species Complex. PLoS Genetics, 2012, 8, e1002528.	3.5	54
14	The RGS protein Crg2 regulates both pheromone and cAMP signalling in <i>Cryptococcus neoformans</i> . Molecular Microbiology, 2008, 70, 379-395.	2.5	53
15	Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin. Applied Microbiology and Biotechnology, 2018, 102, 3939-3949.	3.6	52
16	Transitions in Sexuality: Recapitulation of an Ancestral Tri- and Tetrapolar Mating System in <i>Cryptococcus neoformans</i> . Eukaryotic Cell, 2008, 7, 1847-1855.	3.4	50
17	Transmission of Hypervirulence Traits via Sexual Reproduction within and between Lineages of the Human Fungal Pathogen Cryptococcus gattii. PLoS Genetics, 2013, 9, e1003771.	3.5	45
18	A Homolog of Ste6, the a -Factor Transporter in Saccharomyces cerevisiae , Is Required for Mating but Not for Monokaryotic Fruiting in Cryptococcus neoformans. Eukaryotic Cell, 2005, 4, 147-155.	3.4	33

#	Article	IF	CITATIONS
19	Prey sensing and response in a nematode-trapping fungus is governed by the MAPK pheromone response pathway. Genetics, 2021, 217, .	2.9	30

The High Osmolarity Glycerol (HOG) Pathway Functions in Osmosensing, Trap Morphogenesis and Conidiation of the Nematode-Trapping Fungus Arthrobotrys oligospora. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT 🕼 verlock 🕸 Tf 50 6

21	Nematode-Trapping Fungi Produce Diverse Metabolites during Predator–Prey Interaction. Metabolites, 2020, 10, 117.	2.9	25
22	Evolution of the Mating-Type Locus: The Basidiomycetes. , 0, , 19-34.		25
23	Fungal feature tracker (FFT): A tool for quantitatively characterizing the morphology and growth of filamentous fungi. PLoS Computational Biology, 2019, 15, e1007428.	3.2	20
24	Sensory cilia as the Achilles heel of nematodes when attacked by carnivorous mushrooms. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6014-6022.	7.1	20
25	Genome sequence of the oyster mushroom <i>Pleurotus ostreatus</i> strain PC9. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	20
26	The Mating-Type Locus of Cryptococcus: Evolution of Gene Clusters Governing Sex Determination and Sexual Reproduction from the Phylogenomic Perspective. , 0, , 139-149.		7
27	Nematode-free agricultural system of a fungus-growing termite. Scientific Reports, 2019, 9, 8917.	3.3	6
28	Epigenetic Manipulation Induces the Production of Coumarinâ€Type Secondary Metabolite from <i>Arthrobotrys foliicola</i> . Israel Journal of Chemistry, 2019, 59, 432-438.	2.3	6
29	Genomic analyses of two Italian oyster mushroom <i>Pleurotus pulmonarius</i> strains. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	6
30	Laboratory Maintenance and Culturing of the Nematodeâ€Trapping Fungus <i>Arthrobotrys oligospora</i> . Current Protocols, 2021, 1, e41.	2.9	5
31	Forward genetic screens identified mutants with defects in trap morphogenesis in the nematode-trapping fungus <i>Arthrobotrys oligospora</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	4
32	Sexual Reproduction of Cryptococcus. , 0, , 81-96.		3
33	Assessment of Constitutive Activity of a G Protein-Coupled Receptor, Cpr2, in Cryptococcus neoformans by Heterologous and Homologous Methods. Methods in Enzymology, 2010, 484, 397-412.	1.0	2
34	The conserved regulator of autophagy and innate immunity <i>hlh-30/TFEB</i> mediates tolerance of enterohemorrhagic <i>Escherichia coli</i> in <i>Caenorhabditis elegans</i> . Genetics, 2021, 217, 1-17.	2.9	2
35	Possible impacts of the predominant Bacillus bacteria on the Ophiocordyceps unilateralis s. l. in its infected ant cadavers. Scientific Reports, 2021, 11, 22695.	3.3	2