Pedro Navarro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6727151/publications.pdf

Version: 2024-02-01

23 papers 5,851 citations

361413 20 h-index 642732 23 g-index

26 all docs

26 docs citations

times ranked

26

7741 citing authors

#	Article	IF	CITATIONS
1	Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis. Molecular and Cellular Proteomics, 2012, 11, 0111.016717.	3.8	2,285
2	OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nature Biotechnology, 2014, 32, 219-223.	17.5	692
3	Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. Nature Methods, 2014, 11, 167-170.	19.0	411
4	A multicenter study benchmarks software tools for label-free proteome quantification. Nature Biotechnology, 2016, 34, 1130-1136.	17.5	321
5	Building high-quality assay libraries for targeted analysis of SWATH MS data. Nature Protocols, 2015, 10, 426-441.	12.0	319
6	Label-free quantification in ion mobility–enhanced data-independent acquisition proteomics. Nature Protocols, 2016, 11, 795-812.	12.0	258
7	Quantitative measurements of <i><scp>N</scp></i> â€linked glycoproteins in human plasma by <scp>SWATH</scp> â€ <scp>MS</scp> . Proteomics, 2013, 13, 1247-1256.	2.2	190
8	TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics. Nature Methods, 2016, 13, 777-783.	19.0	173
9	General Statistical Framework for Quantitative Proteomics by Stable Isotope Labeling. Journal of Proteome Research, 2014, 13, 1234-1247.	3.7	165
10	A Refined Method To Calculate False Discovery Rates for Peptide Identification Using Decoy Databases. Journal of Proteome Research, 2009, 8, 1792-1796.	3.7	161
11	Reproducible and Consistent Quantification of the Saccharomyces cerevisiae Proteome by SWATH-mass spectrometry *. Molecular and Cellular Proteomics, 2015, 14, 739-749.	3.8	158
12	Properties of Average Score Distributions of SEQUEST. Molecular and Cellular Proteomics, 2008, 7, 1135-1145.	3.8	142
13	An open-source computational and data resource to analyze digital maps of immunopeptidomes. ELife, 2015, 4, .	6.0	107
14	Conserved Peptide Fragmentation as a Benchmarking Tool for Mass Spectrometers and a Discriminating Feature for Targeted Proteomics. Molecular and Cellular Proteomics, 2014, 13, 2056-2071.	3.8	96
15	A Robust Method for Quantitative High-throughput Analysis of Proteomes by 18O Labeling. Molecular and Cellular Proteomics, 2011, 10, M110.003335.	3.8	95
16	Statistical Model to Analyze Quantitative Proteomics Data Obtained by 180/160 Labeling and Linear Ion Trap Mass Spectrometry. Molecular and Cellular Proteomics, 2009, 8, 1130-1149.	3.8	76
17	Inâ∈depth evaluation of software tools for dataâ∈independent acquisition based labelâ∈free quantification. Proteomics, 2015, 15, 3140-3151.	2.2	66
18	Standardization and harmonization of distributed multi-center proteotype analysis supporting precision medicine studies. Nature Communications, 2020, 11, 5248.	12.8	49

#	Article	IF	CITATIONS
19	The Tegument Protein pp65 of Human Cytomegalovirus Acts as an Optional Scaffold Protein That Optimizes Protein Uploading into Viral Particles. Journal of Virology, 2014, 88, 9633-9646.	3.4	27
20	Quantitative proteomics by 2â€DE, ¹⁶ O/ ¹⁸ O labelling and linear ion trap mass spectrometry analysis of lymph nodes from piglets inoculated by porcine circovirus type 2. Proteomics, 2011, 11, 3452-3469.	2.2	22
21	Quantitative in-depth analysis of the dynamic secretome of activated Jurkat T-cells. Journal of Proteomics, 2011, 75, 561-571.	2.4	16
22	Alzheimer's Disease Amyloid Peptides Interact with DNA, As Proved by Surface Plasmon Resonance. Current Alzheimer Research, 2012, 9, 924-934.	1.4	14
23	A DNA and histone immobilization method to study DNA–histone interactions by surface plasmon resonance. Analytical Biochemistry, 2006, 352, 151-153.	2.4	7