Quan Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/672680/publications.pdf

Version: 2024-02-01

351 papers 17,003 citations

67 h-index 20943 115 g-index

360 all docs

360 docs citations

360 times ranked 11435 citing authors

#	Article	IF	CITATIONS
1	Significance-Based Essential Protein Discovery. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 633-642.	1.9	8
2	SgRNA-RF: Identification of SgRNA On-Target Activity With Imbalanced Datasets. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 2442-2453.	1.9	5
3	CRCF: A Method of Identifying Secretory Proteins of Malaria Parasites. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 2149-2157.	1.9	1
4	RFhy-m2G: Identification of RNA N2-methylguanosine modification sites based on random forest and hybrid features. Methods, 2022, 203, 32-39.	1.9	32
5	A comparison of deep learning-based pre-processing and clustering approaches for single-cell RNA sequencing data. Briefings in Bioinformatics, 2022, 23, .	3.2	14
6	prPredâ€DRLF: Plant R protein predictor using deep representation learning features. Proteomics, 2022, 22, e2100161.	1.3	11
7	DeepM6ASeq-EL: prediction of human N6-methyladenosine (m6A) sites with LSTM and ensemble learning. Frontiers of Computer Science, 2022, 16, 1.	1.6	58
8	Characterizing viral circRNAs and their application in identifying circRNAs in viruses. Briefings in Bioinformatics, 2022, 23, .	3.2	18
9	webTWAS: a resource for disease candidate susceptibility genes identified by transcriptome-wide association study. Nucleic Acids Research, 2022, 50, D1123-D1130.	6.5	160
10	DeepCap-Kcr: accurate identification and investigation of protein lysine crotonylation sites based on capsule network. Briefings in Bioinformatics, 2022, 23, .	3.2	13
11	NmRF: identification of multispecies RNA 2'-O-methylation modification sites from RNA sequences. Briefings in Bioinformatics, 2022, 23, .	3.2	37
12	FTWSVM-SR: DNA-Binding Proteins Identification via Fuzzy Twin Support Vector Machines on Self-Representation. Interdisciplinary Sciences, Computational Life Sciences, 2022, 14, 372-384.	2.2	7
13	A novel fast multiple nucleotide sequence alignment method based on FM-index. Briefings in Bioinformatics, 2022, 23, .	3.2	5
14	Distant metastasis identification based on optimized graph representation of gene interaction patterns. Briefings in Bioinformatics, 2022, 23, .	3.2	6
15	Single-cell RNA analysis reveals the potential risk of organ-specific cell types vulnerable to SARS-CoV-2 infections. Computers in Biology and Medicine, 2022, 140, 105092.	3.9	73
16	Critical assessment of computational tools for prokaryotic and eukaryotic promoter prediction. Briefings in Bioinformatics, 2022, 23, .	3.2	11
17	Comparative genome analysis of plant ascomycete fungal pathogens with different lifestyles reveals distinctive virulence strategies. BMC Genomics, 2022, 23, 34.	1.2	13
18	Identification of drug–target interactions via multiple kernel-based triple collaborative matrix factorization. Briefings in Bioinformatics, 2022, 23, .	3.2	38

#	Article	IF	Citations
19	NerLTR-DTA: drug–target binding affinity prediction based on neighbor relationship and learning to rank. Bioinformatics, 2022, 38, 1964-1971.	1.8	29
20	A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data. Briefings in Bioinformatics, 2022, 23, .	3.2	20
21	String kernels construction and fusion: a survey with bioinformatics application. Frontiers of Computer Science, 2022, 16 , 1 .	1.6	11
22	CRBPDL: Identification of circRNA-RBP interaction sites using an ensemble neural network approach. PLoS Computational Biology, 2022, 18, e1009798.	1.5	29
23	The Characterization of Structure and Prediction for Aquaporin in Tumour Progression by Machine Learning. Frontiers in Cell and Developmental Biology, 2022, 10, 845622.	1.8	1
24	GMNN2CD: identification of circRNA–disease associations based on variational inference and graph Markov neural networks. Bioinformatics, 2022, 38, 2246-2253.	1.8	34
25	A road map for happiness: The psychological factors related cell types in various parts of human body from single cell RNA-seq data analysis. Computers in Biology and Medicine, 2022, 143, 105286.	3.9	3
26	Protein–DNA/RNA interactions: Machine intelligence tools and approaches in the era of artificial intelligence and big data. Proteomics, 2022, 22, e2100197.	1.3	20
27	MDICC: novel method for multi-omics data integration and cancer subtype identification. Briefings in Bioinformatics, 2022, 23, .	3.2	15
28	MDADP: A Webserver Integrating Database and Prediction Tools for Microbe-Disease Associations. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 3427-3434.	3.9	5
29	Structured Sparse Regularized TSK Fuzzy System for predicting therapeutic peptides. Briefings in Bioinformatics, 2022, 23, .	3.2	4
30	Identifying and Classifying Enhancers by Dinucleotide-Based Auto-Cross Covariance and Attention-Based Bi-LSTM. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-11.	0.7	2
31	scIMC: a platform for benchmarking comparison and visualization analysis of scRNA-seq data imputation methods. Nucleic Acids Research, 2022, 50, 4877-4899.	6.5	12
32	DeepMC-iNABP: Deep learning for multiclass identification and classification of nucleic acid-binding proteins. Computational and Structural Biotechnology Journal, 2022, 20, 2020-2028.	1.9	14
33	Identification and classification of promoters using the attention mechanism based on long short-term memory. Frontiers of Computer Science, 2022, 16, .	1.6	6
34	AMPpred-EL: An effective antimicrobial peptide prediction model based on ensemble learning. Computers in Biology and Medicine, 2022, 146, 105577.	3.9	12
35	Machine Learning and Its Applications for Protozoal Pathogens and Protozoal Infectious Diseases. Frontiers in Cellular and Infection Microbiology, 2022, 12, 882995.	1.8	6
36	iLncDA-LTR: Identification of IncRNA-disease associations by learning to rank. Computers in Biology and Medicine, 2022, 146, 105605.	3.9	8

#	Article	IF	Citations
37	Predicting protein–peptide binding residues via interpretable deep learning. Bioinformatics, 2022, 38, 3351-3360.	1.8	24
38	Prediction of Cell-Penetrating Peptides Using a Novel HSIC-Based Multiview TSK Fuzzy System. Applied Sciences (Switzerland), 2022, 12, 5383.	1.3	2
39	webSCST: an interactive web application for single-cell RNA-sequencing data and spatial transcriptomic data integration. Bioinformatics, 2022, 38, 3488-3489.	1.8	16
40	Effector-GAN: prediction of fungal effector proteins based on pretrained deep representation learning methods and generative adversarial networks. Bioinformatics, 2022, 38, 3541-3548.	1.8	6
41	MLapSVM-LBS: Predicting DNA-binding proteins via a multiple Laplacian regularized support vector machine with local behavior similarity. Knowledge-Based Systems, 2022, 250, 109174.	4.0	13
42	Identification of plant vacuole proteins by exploiting deep representation learning features. Computational and Structural Biotechnology Journal, 2022, 20, 2921-2927.	1.9	4
43	iKcr_CNN: A novel computational tool for imbalance classification of human nonhistone crotonylation sites based on convolutional neural networks with focal loss. Computational and Structural Biotechnology Journal, 2022, 20, 3268-3279.	1.9	5
44	Protein-DNA Binding Residues Prediction Using a Deep Learning Model with Hierarchical Feature Extraction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, , 1-10.	1.9	3
45	A spectral clustering with self-weighted multiple kernel learning method for single-cell RNA-seq data. Briefings in Bioinformatics, 2021, 22, .	3.2	25
46	Minirmd: accurate and fast duplicate removal tool for short reads via multiple minimizers. Bioinformatics, 2021, 37, 1604-1606.	1.8	14
47	Revisiting genome-wide association studies from statistical modelling to machine learning. Briefings in Bioinformatics, 2021, 22, .	3. 2	20
48	VPTMdb: a viral posttranslational modification database. Briefings in Bioinformatics, 2021, 22, .	3.2	9
49	Goals and approaches for each processing step for single-cell RNA sequencing data. Briefings in Bioinformatics, 2021, 22, .	3.2	31
50	ITP-Pred: an interpretable method for predicting, therapeutic peptides with fused features low-dimension representation. Briefings in Bioinformatics, 2021, 22, .	3.2	53
51	Using a low correlation high orthogonality feature set and machine learning methods to identify plant pentatricopeptide repeat coding gene/protein. Neurocomputing, 2021, 424, 246-254.	3.5	3
52	EP3: an ensemble predictor that accurately identifies type III secreted effectors. Briefings in Bioinformatics, 2021, 22, 1918-1928.	3.2	26
53	iPro2L-PSTKNC: A Two-Layer Predictor for Discovering Various Types of Promoters by Position Specific of Nucleotide Composition. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 2329-2337.	3.9	6
54	An <i>in silico</i> approach to identification, categorization and prediction of nucleic acid binding proteins. Briefings in Bioinformatics, 2021, 22, .	3.2	69

#	Article	lF	CITATIONS
55	DeepATT: a hybrid category attention neural network for identifying functional effects of DNA sequences. Briefings in Bioinformatics, 2021, 22, .	3.2	46
56	BP4RNAseq: a babysitter package for retrospective and newly generated RNA-seq data analyses using both alignment-based and alignment-free quantification method. Bioinformatics, 2021, 37, 1319-1321.	1.8	64
57	A Convolutional Neural Network Using Dinucleotide One-hot Encoder for identifying DNA N6-Methyladenine Sites in the Rice Genome. Neurocomputing, 2021, 422, 214-221.	3.5	45
58	Prediction of bio-sequence modifications and the associations with diseases. Briefings in Functional Genomics, 2021, 20, 1-18.	1.3	64
59	Prediction of diabetic protein markers based on an ensemble method. Frontiers in Bioscience, 2021, 26, 207.	0.8	6
60	sgRNACNN: identifying sgRNA on-target activity in four crops using ensembles of convolutional neural networks. Plant Molecular Biology, 2021, 105, 483-495.	2.0	89
61	Sequence representation approaches for sequence-based protein prediction tasks that use deep learning. Briefings in Functional Genomics, 2021, 20, 61-73.	1.3	34
62	Decision Tree for Sequences. IEEE Transactions on Knowledge and Data Engineering, 2021, , 1-1.	4.0	7
63	Application of learning to rank in bioinformatics tasks. Briefings in Bioinformatics, 2021, 22, .	3.2	9
64	GutBalance: a server for the human gut microbiome-based disease prediction and biomarker discovery with compositionality addressed. Briefings in Bioinformatics, 2021, 22, .	3.2	12
65	IEEE Access Special Section Editorial: Feature Representation and Learning Methods With Applications in Large-Scale Biological Sequence Analysis. IEEE Access, 2021, 9, 33110-33119.	2.6	1
66	Instance-Based Classification Through Hypothesis Testing. IEEE Access, 2021, 9, 17485-17494.	2.6	1
67	A comprehensive overview and critical evaluation of gene regulatory network inference technologies. Briefings in Bioinformatics, 2021, 22, .	3.2	54
68	Anticancer peptides prediction with deep representation learning features. Briefings in Bioinformatics, 2021, 22, .	3.2	76
69	MRMD2.0: A Python Tool for Machine Learning with Feature Ranking and Reduction. Current Bioinformatics, 2021, 15, 1213-1221.	0.7	107
70	HSM6AP: a high-precision predictor for the Homo <i>sapiens</i> N6-methyladenosine (m^6 A) based on multiple weights and feature stitching. RNA Biology, 2021, 18, 1882-1892.	1.5	19
71	Prediction of RNA-binding protein and alternative splicing event associations during epithelial–mesenchymal transition based on inductive matrix completion. Briefings in Bioinformatics, 2021, 22, .	3.2	10
72	Machine learning for phytopathology: from the molecular scale towards the network scale. Briefings in Bioinformatics, 2021, 22, .	3.2	6

#	Article	lF	CITATIONS
73	Single-cell RNA Sequencing Analysis Identifies Key Genes in Brain Metastasis from Lung Adenocarcinoma. Current Gene Therapy, 2021, 21, 338-348.	0.9	16
74	CarSite-II: an integrated classification algorithm for identifying carbonylated sites based on K-means similarity-based undersampling and synthetic minority oversampling techniques. BMC Bioinformatics, 2021, 22, 216.	1.2	4
75	A comprehensive review of the imbalance classification of protein post-translational modifications. Briefings in Bioinformatics, 2021, 22, .	3.2	26
76	DisBalance: a platform to automatically build balance-based disease prediction models and discover microbial biomarkers from microbiome data. Briefings in Bioinformatics, 2021, 22, .	3.2	10
77	Prediction of drug-target interactions based on multi-layer network representation learning. Neurocomputing, 2021, 434, 80-89.	3.5	45
78	Critical downstream analysis steps for single-cell RNA sequencing data. Briefings in Bioinformatics, 2021, 22, .	3.2	33
79	Computational biology and chemistry Special section editorial: Computational analyses for miRNA. Computational Biology and Chemistry, 2021, 91, 107448.	1.1	3
80	Progress in the Development of Antimicrobial Peptide Prediction Tools. Current Protein and Peptide Science, 2021, 22, 211-216.	0.7	2
81	Ecological and network analyses identify four microbial species with potential significance for the diagnosis/treatment of ulcerative colitis (UC). BMC Microbiology, 2021, 21, 138.	1.3	24
82	ORSâ€Pred: An optimized reduced schemeâ€based identifier for antioxidant proteins. Proteomics, 2021, 21, e2100017.	1.3	4
83	MMFGRN: a multi-source multi-model fusion method for gene regulatory network reconstruction. Briefings in Bioinformatics, 2021, 22, .	3.2	10
84	The accurate prediction and characterization of cancerlectin by a combined machine learning and GO analysis. Briefings in Bioinformatics, 2021, 22, .	3.2	3
85	Current status and future prospects of drug–target interaction prediction. Briefings in Functional Genomics, 2021, 20, 312-322.	1.3	10
86	Briefings in functional genomics special section editorial: analysis of integrated multiple omics data. Briefings in Functional Genomics, 2021, 20, 196-197.	1.3	1
87	Accurate Prediction and Key Feature Recognition of Immunoglobulin. Applied Sciences (Switzerland), 2021, 11, 6894.	1.3	5
88	High-resolution transcription factor binding sites prediction improved performance and interpretability by deep learning method. Briefings in Bioinformatics, 2021, 22, .	3.2	24
89	DeepAc4C: a convolutional neural network model with hybrid features composed of physicochemical patterns and distributed representation information for identification of N4-acetylcytidine in mRNA. Bioinformatics, 2021, 38, 52-57.	1.8	20
90	Molecular design in drug discovery: a comprehensive review of deep generative models. Briefings in Bioinformatics, $2021, 22$, .	3.2	61

#	Article	IF	Citations
91	Matrix factorization-based data fusion for the prediction of RNA-binding proteins and alternative splicing event associations during epithelial–mesenchymal transition. Briefings in Bioinformatics, 2021, 22, .	3.2	11
92	Clustering of genes from microarray data using hierarchical projective adaptive resonance theory: a case study of tuberculosis. Briefings in Functional Genomics, 2021, , .	1.3	0
93	rBPDL:Predicting RNA-Binding Proteins Using Deep Learning. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 3668-3676.	3.9	10
94	Identifying DNA N4-methylcytosine sites in the rosaceae genome with a deep learning model relying on distributed feature representation. Computational and Structural Biotechnology Journal, 2021, 19, 1612-1619.	1.9	21
95	Prediction of presynaptic and postsynaptic neurotoxins based on feature extraction. Mathematical Biosciences and Engineering, 2021, 18, 5943-5958.	1.0	2
96	Identify RNA-associated subcellular localizations based on multi-label learning using Chou's 5-steps rule. BMC Genomics, 2021, 22, 56.	1.2	17
97	TS-m6A-DL: Tissue-specific identification of N6-methyladenosine sites using a universal deep learning model. Computational and Structural Biotechnology Journal, 2021, 19, 4619-4625.	1.9	23
98	SubLocEP: a novel ensemble predictor of subcellular localization of eukaryotic mRNA based on machine learning. Briefings in Bioinformatics, 2021, 22, .	3.2	18
99	Identification of sub-Golgi protein localization by use of deep representation learning features. Bioinformatics, 2021, 36, 5600-5609.	1.8	50
100	Genome-Wide Analysis of LysM-Containing Gene Family in Wheat: Structural and Phylogenetic Analysis during Development and Defense. Genes, 2021, 12, 31.	1.0	13
101	Staem5: A novel computational approach for accurate prediction of m5C site. Molecular Therapy - Nucleic Acids, 2021, 26, 1027-1034.	2.3	20
102	iTTCA-RF: a random forest predictor for tumor T cell antigens. Journal of Translational Medicine, 2021, 19, 449.	1.8	28
103	DrugHybrid_BS: Using Hybrid Feature Combined With Bagging-SVM to Predict Potentially Druggable Proteins. Frontiers in Pharmacology, 2021, 12, 771808.	1.6	9
104	Laplacian Regularized Sparse Representation based Classifier for Identifying DNA N4-methylcytosine Sites via L2,1/2-matrix Norm. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, PP, 1-1.	1.9	13
105	Genome-Wide Analysis of the MADS-Box Gene Family in Maize: Gene Structure, Evolution, and Relationships. Genes, 2021, 12, 1956.	1.0	14
106	Membrane Protein Identification via Multi-view Graph Regularized k-Local Hyperplane Distance Nearest Neighbor Model., 2021,,.		2
107	Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools. Briefings in Bioinformatics, 2020, 21, 408-420.	3.2	122
108	Computational methods for identifying the critical nodes in biological networks. Briefings in Bioinformatics, 2020, 21, 486-497.	3.2	69

#	Article	IF	CITATIONS
109	Transcription factors–DNA interactions in rice: identification and verification. Briefings in Bioinformatics, 2020, 21, 946-956.	3.2	19
110	Protein Complexes Identification with Family-Wise Error Rate Control. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 2062-2073.	1.9	6
111	Predicting disease-associated circular RNAs using deep forests combined with positive-unlabeled learning methods. Briefings in Bioinformatics, 2020, 21, 1425-1436.	3.2	96
112	Investigating Maize Yield-Related Genes in Multiple Omics Interaction Network Data. IEEE Transactions on Nanobioscience, 2020, 19, 142-151.	2.2	3
113	Critical evaluation of web-based prediction tools for human protein subcellular localization. Briefings in Bioinformatics, 2020, 21, 1628-1640.	3.2	45
114	Machine learning and its applications in plant molecular studies. Briefings in Functional Genomics, 2020, 19, 40-48.	1.3	44
115	The application of machine learning to disease diagnosis and treatment. Mathematical Biosciences, 2020, 320, 108305.	0.9	18
116	Clustering and classification methods for single-cell RNA-sequencing data. Briefings in Bioinformatics, 2020, 21, 1196-1208.	3.2	125
117	Regulator Network Analysis of Rice and Maize Yield-Related Genes. Frontiers in Cell and Developmental Biology, 2020, 8, 621464.	1.8	2
118	Biocomputing and Synthetic Biology in Cells: Cells Special Issue. Cells, 2020, 9, 2459.	1.8	0
119	Impact of Transcatheter Aortic Valve Replacement on Risk Profiles of Surgical Aortic Valve Replacement Patients. Cardiovascular Revascularization Medicine, 2020, 21, 959-963.	0.3	3
120	Exploring Drug Treatment Patterns Based on the Action of Drug and Multilayer Network Model. International Journal of Molecular Sciences, 2020, 21, 5014.	1.8	22
121	Computational Prediction of Protein Arginine Methylation Based on Composition–Transition–Distribution Features. ACS Omega, 2020, 5, 27470-27479.	1.6	8
122	Reference-Based Sequence Classification. IEEE Access, 2020, 8, 218199-218214.	2.6	1
123	Analysis of Cyclin-Dependent Kinase 1 as an Independent Prognostic Factor for Gastric Cancer Based on Statistical Methods. Frontiers in Cell and Developmental Biology, 2020, 8, 620164.	1.8	9
124	Editorial: Computational Learning Models and Methods Driven by Omics for Precision Medicine. Frontiers in Genetics, 2020, 11, 620976.	1.1	0
125	Basic polar and hydrophobic properties are the main characteristics that affect the binding of transcription factors to methylation sites. Bioinformatics, 2020, 36, 4263-4268.	1.8	19
126	Network analysis of the hot spring microbiome sketches out possible niche differentiations among ecological guilds. Ecological Modelling, 2020, 431, 109147.	1.2	7

#	Article	IF	Citations
127	CWLy-SVM: A support vector machine-based tool for identifying cell wall lytic enzymes. Computational Biology and Chemistry, 2020, 87, 107304.	1.1	18
128	RF-PseU: A Random Forest Predictor for RNA Pseudouridine Sites. Frontiers in Bioengineering and Biotechnology, 2020, 8, 134.	2.0	72
129	2lpiRNApred: a two-layered integrated algorithm for identifying piRNAs and their functions based on LFE-GM feature selection. RNA Biology, 2020, 17, 892-902.	1.5	18
130	DeepAVP: A Dual-Channel Deep Neural Network for Identifying Variable-Length Antiviral Peptides. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3012-3019.	3.9	69
131	Guest Editorial: Bio-Inspired Computing Models and Algorithms. IEEE Transactions on Nanobioscience, 2020, 19, 100-101.	2.2	1
132	Review and comparative analysis of machine learning-based phage virion protein identification methods. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140406.	1.1	25
133	mAML: an automated machine learning pipeline with a microbiome repository for human disease classification. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	1.4	20
134	StackCPPred: a stacking and pairwise energy content-based prediction of cell-penetrating peptides and their uptake efficiency. Bioinformatics, 2020, 36, 3028-3034.	1.8	111
135	Exploration of the correlation between GPCRs and drugs based on a learning to rank algorithm. Computers in Biology and Medicine, 2020, 119, 103660.	3.9	29
136	6mA-RicePred: A Method for Identifying DNA N6-Methyladenine Sites in the Rice Genome Based on Feature Fusion. Frontiers in Plant Science, 2020, 11, 4.	1.7	34
137	Machine Learning Techniques for High-Throughput Structure and Function Analysis for Proteomics and Genomics. Combinatorial Chemistry and High Throughput Screening, 2020, 22, 664-664.	0.6	1
138	PPTPP: a novel therapeutic peptide prediction method using physicochemical property encoding and adaptive feature representation learning. Bioinformatics, 2020, 36, 3982-3987.	1.8	66
139	Analysis of gene expression profiles of lung cancer subtypes with machine learning algorithms. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165822.	1.8	43
140	Identifying cell types to interpret scRNA-seq data: how, why and more possibilities. Briefings in Functional Genomics, 2020, 19, 286-291.	1.3	28
141	CirRNAPL: A web server for the identification of circRNA based on extreme learning machine. Computational and Structural Biotechnology Journal, 2020, 18, 834-842.	1.9	37
142	NonClasGP-Pred: robust and efficient prediction of non-classically secreted proteins by integrating subset-specific optimal models of imbalanced data. Microbial Genomics, 2020, 6, .	1.0	5
143	Application and Development of Artificial Intelligence and Intelligent Disease Diagnosis. Current Pharmaceutical Design, 2020, 26, 3069-3075.	0.9	20
144	GRRFNet: Guided Regularized Random Forest-based Gene Regulatory Network Inference Using Data Integration., 2020,,.		4

#	Article	IF	CITATIONS
145	4mCPred: machine learning methods for DNA N4-methylcytosine sites prediction. Bioinformatics, 2019, 35, 593-601.	1.8	146
146	Integration of deep feature representations and handcrafted features to improve the prediction of N6-methyladenosine sites. Neurocomputing, 2019, 324, 3-9.	3.5	130
147	Meta-Path Methods for Prioritizing Candidate Disease miRNAs. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 283-291.	1.9	126
148	Advanced Machine Learning Techniques for Bioinformatics. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1182-1183.	1,9	11
149	A novel collaborative filtering model for LncRNA-disease association prediction based on the Na $ ilde{A}$ -ve Bayesian classifier. BMC Bioinformatics, 2019, 20, 396.	1.2	49
150	Exploiting Discriminative Regions of Brain Slices Based on 2D CNNs for Alzheimer's Disease Classification. IEEE Access, 2019, 7, 181423-181433.	2.6	38
151	SecProMTB: Support Vector Machineâ€Based Classifier for Secretory Proteins Using Imbalanced Data Sets Applied toMycobacterium tuberculosis. Proteomics, 2019, 19, 1900007.	1.3	43
152	Molecular Computing and Bioinformatics. Molecules, 2019, 24, 2358.	1.7	13
153	Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging: a prospective, cohort study. Lancet, The, 2019, 394, 1629-1637.	6.3	263
154	Supervised Brain Tumor Segmentation Based on Gradient and Context-Sensitive Features. Frontiers in Neuroscience, 2019, 13, 144.	1.4	29
155	Selecting Essential MicroRNAs Using a Novel Voting Method. Molecular Therapy - Nucleic Acids, 2019, 18, 16-23.	2.3	31
156	AOPs-SVM: A Sequence-Based Classifier of Antioxidant Proteins Using a Support Vector Machine. Frontiers in Bioengineering and Biotechnology, 2019, 7, 224.	2.0	63
157	A Random Forest Sub-Golgi Protein Classifier Optimized via Dipeptide and Amino Acid Composition Features. Frontiers in Bioengineering and Biotechnology, 2019, 7, 215.	2.0	100
158	ELM-MHC: An Improved MHC Identification Method with Extreme Learning Machine Algorithm. Journal of Proteome Research, 2019, 18, 1392-1401.	1.8	49
159	Research progress in protein posttranslational modification site prediction. Briefings in Functional Genomics, 2019, 18, 220-229.	1.3	39
160	Investigation and development of maize fused network analysis with multi-omics. Plant Physiology and Biochemistry, 2019, 141, 380-387.	2.8	14
161	Perspectives of Bioinformatics in Big Data Era. Current Genomics, 2019, 20, 79-80.	0.7	6
162	Incorporating Distance-Based Top-n-gram and Random Forest To Identify Electron Transport Proteins. Journal of Proteome Research, 2019, 18, 2931-2939.	1.8	87

#	Article	IF	Citations
163	Protein Function Prediction: From Traditional Classifier to Deep Learning. Proteomics, 2019, 19, e1900119.	1.3	110
164	TAVR in Low-Risk Patients. JACC: Cardiovascular Interventions, 2019, 12, 901-907.	1.1	65
165	Prediction of Potential Disease-Associated MicroRNAs by Using Neural Networks. Molecular Therapy - Nucleic Acids, 2019, 16, 566-575.	2.3	70
166	Iterative feature representations improve N4-methylcytosine site prediction. Bioinformatics, 2019, 35, 4930-4937.	1.8	113
167	Combining Sparse Group Lasso and Linear Mixed Model Improves Power to Detect Genetic Variants Underlying Quantitative Traits. Frontiers in Genetics, 2019, 10, 271.	1.1	5
168	Prediction of Thermophilic Proteins Using Voting Algorithm. Lecture Notes in Computer Science, 2019, , 195-203.	1.0	4
169	PEPred-Suite: improved and robust prediction of therapeutic peptides using adaptive feature representation learning. Bioinformatics, 2019, 35, 4272-4280.	1.8	116
170	Details in the evaluation of circular RNA detection tools: Reply to Chen and Chuang. PLoS Computational Biology, 2019, 15, e1006916.	1.5	8
171	Latest Machine Learning Techniques for Biomedicine and Bioinformatics. Current Bioinformatics, 2019, 14, 176-177.	0.7	19
172	Diagnosis of Brain Diseases via Multi-Scale Time-Series Model. Frontiers in Neuroscience, 2019, 13, 197.	1.4	5
173	Application of Machine Learning in Microbiology. Frontiers in Microbiology, 2019, 10, 827.	1.5	130
174	A Novel Approach Based on a Weighted Interactive Network to Predict Associations of MiRNAs and Diseases. International Journal of Molecular Sciences, 2019, 20, 110.	1.8	20
175	Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response. Methods, 2019, 166, 91-102.	1.9	182
176	Current Bioinformatics's New and Improved Impact Factorâ€"1.189. Current Bioinformatics, 2019, 14, 686-687.	0.7	0
177	Taxonomy dimension reduction for colorectal cancer prediction. Computational Biology and Chemistry, 2019, 83, 107160.	1.1	23
178	Prediction of tumor metastasis from sequencing data in the era of genome sequencing. Briefings in Functional Genomics, 2019, 18, 412-418.	1.3	19
179	Identifying protein-protein interface via a novel multi-scale local sequence and structural representation. BMC Bioinformatics, 2019, 20, 483.	1.2	9
180	Exploring sequence-based features for the improved prediction of DNA N4-methylcytosine sites in multiple species. Bioinformatics, 2019, 35, 1326-1333.	1.8	156

#	Article	IF	CITATIONS
181	Gene2vec: gene subsequence embedding for prediction of mammalian <i>N</i> ⁶ -methyladenosine sites from mRNA. Rna, 2019, 25, 205-218.	1.6	421
182	Deep learning in omics: a survey and guideline. Briefings in Functional Genomics, 2019, 18, 41-57.	1.3	119
183	Fast Prediction of Protein Methylation Sites Using a Sequence-Based Feature Selection Technique. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1264-1273.	1.9	163
184	Review of Progress in Predicting Protein Methylation Sites. Current Organic Chemistry, 2019, 23, 1663-1670.	0.9	8
185	A Review of DNA-binding Proteins Prediction Methods. Current Bioinformatics, 2019, 14, 246-254.	0.7	79
186	Perspectives of Bioinformatics in Big Data Era. Current Genomics, 2019, 20, 79-80.	0.7	1
187	Prediction of potential disease-associated microRNAs using structural perturbation method. Bioinformatics, 2018, 34, 2425-2432.	1.8	229
188	NucPosPred: Predicting species-specific genomic nucleosome positioning via four different modes of general PseKNC. Journal of Theoretical Biology, 2018, 450, 15-21.	0.8	35
189	O-GlcNAcPRED-II: an integrated classification algorithm for identifying O-GlcNAcylation sites based on fuzzy undersampling and a <i>K</i> -means PCA oversampling technique. Bioinformatics, 2018, 34, 2029-2036.	1.8	128
190	Network-based method for mining novel HPV infection related genes using random walk with restart algorithm. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2376-2383.	1.8	31
191	Tumor origin detection with tissue-specific miRNA and DNA methylation markers. Bioinformatics, 2018, 34, 398-406.	1.8	308
192	Prediction of human protein subcellular localization using deep learning. Journal of Parallel and Distributed Computing, 2018, 117, 212-217.	2.7	184
193	HITS-PR-HHblits: protein remote homology detection by combining PageRank and Hyperlink-Induced Topic Search. Briefings in Bioinformatics, 2018, , .	3.2	53
194	Comparative analysis and prediction of quorum-sensing peptides using feature representation learning and machine learning algorithms. Briefings in Bioinformatics, 2018, , .	3.2	60
195	Predicting Diabetes Mellitus With Machine Learning Techniques. Frontiers in Genetics, 2018, 9, 515.	1.1	497
196	Data Mining and Network Analytics in Bioinformatics and Medicine. Current Proteomics, 2018, 15, 343-343.	0.1	0
197	Data Mining and Network Analytics in Bioinformatics. Current Proteomics, 2018, 15, 174-174.	0.1	1
198	Transcatheter Aortic Valve Replacement in Low-Risk Patients With Symptomatic Severe Aortic Stenosis. Journal of the American College of Cardiology, 2018, 72, 2095-2105.	1.2	175

#	Article	IF	CITATIONS
199	Sc-ncDNAPred: A Sequence-Based Predictor for Identifying Non-coding DNA in Saccharomyces cerevisiae. Frontiers in Microbiology, 2018, 9, 2174.	1.5	19
200	Sequence clustering in bioinformatics: an empirical study. Briefings in Bioinformatics, 2018, , .	3.2	104
201	Processing Optimization of Typed Resources with Synchronized Storage and Computation Adaptation in Fog Computing. Wireless Communications and Mobile Computing, 2018, 2018, 1-13.	0.8	23
202	VCSRA: A fast and accurate multiple sequence alignment algorithm with a high degree of parallelism. Journal of Genetics and Genomics, 2018, 45, 407-410.	1.7	5
203	Cancer Diagnosis Through IsomiR Expression with Machine Learning Method. Current Bioinformatics, 2018, 13, 57-63.	0.7	138
204	RicyerDB: A Database For Collecting Rice Yield-related Genes with Biological Analysis. International Journal of Biological Sciences, 2018, 14, 965-970.	2.6	20
205	Special Protein Molecules Computational Identification. International Journal of Molecular Sciences, 2018, 19, 536.	1.8	4
206	70ProPred: a predictor for discovering sigma70 promoters based on combining multiple features. BMC Systems Biology, 2018, 12, 44.	3.0	72
207	cmFSM: a scalable CPU-MIC coordinated drug-finding tool by frequent subgraph mining. BMC Bioinformatics, 2018, 19, 98.	1.2	7
208	Efficient computation of motif discovery on Intel Many Integrated Core (MIC) Architecture. BMC Bioinformatics, 2018, 19, 282.	1.2	9
209	Bioinformatics applications on Apache Spark. GigaScience, 2018, 7, .	3.3	55
210	Classification of Small GTPases with Hybrid Protein Features and Advanced Machine Learning Techniques. Current Bioinformatics, 2018, 13, 492-500.	0.7	43
211	Computational identification and characterization of miRNAs and their target genes from five cyprinidae fishes. Saudi Journal of Biological Sciences, 2017, 24, 1126-1135.	1.8	7
212	Prediction and Validation of Disease Genes Using HeteSim Scores. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14, 687-695.	1.9	199
213	Local-DPP: An improved DNA-binding protein prediction method by exploring local evolutionary information. Information Sciences, 2017, 384, 135-144.	4.0	226
214	Construction and Identification of the RNAi Recombinant Lentiviral Vector Targeting Human DEPDC7 Gene. Interdisciplinary Sciences, Computational Life Sciences, 2017, 9, 350-356.	2.2	9
215	Inferring MicroRNA-Disease Associations by Random Walk on a Heterogeneous Network with Multiple Data Sources. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14, 905-915.	1.9	265
216	PhosPred-RF: A Novel Sequence-Based Predictor for Phosphorylation Sites Using Sequential Information Only. IEEE Transactions on Nanobioscience, 2017, 16, 240-247.	2.2	112

#	Article	IF	Citations
217	Detecting N6-methyladenosine sites from RNA transcriptomes using ensemble Support Vector Machines. Scientific Reports, 2017, 7, 40242.	1.6	123
218	CPPred-RF: A Sequence-based Predictor for Identifying Cell-Penetrating Peptides and Their Uptake Efficiency. Journal of Proteome Research, 2017, 16, 2044-2053.	1.8	168
219	HPSLPred: An Ensemble Multiâ€Label Classifier for Human Protein Subcellular Location Prediction with Imbalanced Source. Proteomics, 2017, 17, 1700262.	1.3	114
220	Machine learning and graph analytics in computational biomedicine. Artificial Intelligence in Medicine, 2017, 83, 1.	3.8	26
221	Bidirectional value driven design between economical planning and technical implementation based on data graph, information graph and knowledge graph. , 2017, , .		7
222	Multiple Sequence Alignment Based on a Suffix Tree and Center-Star Strategy: A Linear Method for Multiple Nucleotide Sequence Alignment on Spark Parallel Framework. Journal of Computational Biology, 2017, 24, 1230-1242.	0.8	17
223	Specifying architecture of knowledge graph with data graph, information graph, knowledge graph and wisdom graph. , 2017, , .		37
224	CMSA: a heterogeneous CPU/GPU computing system for multiple similar RNA/DNA sequence alignment. BMC Bioinformatics, 2017, 18, 315.	1.2	25
225	Reconstructing evolutionary trees in parallel for massive sequences. BMC Systems Biology, 2017, 11, 100.	3.0	15
226	Scalable Data Mining Algorithms in Computational Biology and Biomedicine. BioMed Research International, 2017, 2017, 1-3.	0.9	20
227	Oral microbial community assembly under the influence of periodontitis. PLoS ONE, 2017, 12, e0182259.	1.1	12
228	A comprehensive overview and evaluation of circular RNA detection tools. PLoS Computational Biology, 2017, 13, e1005420.	1.5	313
229	Probability-based collaborative filtering model for predicting gene–disease associations. BMC Medical Genomics, 2017, 10, 76.	0.7	73
230	HAlign-II: efficient ultra-large multiple sequence alignment and phylogenetic tree reconstruction with distributed and parallel computing. Algorithms for Molecular Biology, 2017, 12, 25.	0.3	30
231	Iteratively collective prediction of disease-gene associations through the incomplete network. , 2017, ,		8
232	SkipCPP-Pred: an improved and promising sequence-based predictor for predicting cell-penetrating peptides. BMC Genomics, 2017, 18, 742.	1.2	85
233	Editorial:Latest Computational Techniques for Big Data Era Bioinformatics Problems. Current Genomics, 2017, 18, 305.	0.7	2
234	DephosSitePred: A High Accuracy Predictor for Protein Dephosphorylation Sites. Combinatorial Chemistry and High Throughput Screening, 2017, 20, 153-157.	0.6	6

#	Article	IF	CITATIONS
235	Prediction and Identification of Kr $\tilde{A}\frac{1}{4}$ ppel-Like Transcription Factors by Machine Learning Method. Combinatorial Chemistry and High Throughput Screening, 2017, 20, 594-602.	0.6	8
236	Similarity computation strategies in the microRNA-disease network: a survey. Briefings in Functional Genomics, 2016, 15, elv024.	1.3	172
237	An Empirical Study of Features Fusion Techniques for Protein-Protein Interaction Prediction. Current Bioinformatics, 2016, 11, 4-12.	0.7	52
238	Editorial (Thematic Issue: Machine Learning Techniques for Protein Structure, Genomics Function) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
239	Accurate Identification of Cancerlectins through Hybrid Machine Learning Technology. International Journal of Genomics, 2016, 2016, 1-11.	0.8	23
240	Prediction of G Protein-Coupled Receptors with SVM-Prot Features and Random Forest. Scientifica, 2016, 2016, 1-10.	0.6	38
241	Recent Progress in Machine Learning-Based Methods for Protein Fold Recognition. International Journal of Molecular Sciences, 2016, 17, 2118.	1.8	73
242	The Generalized Relative Pairs IBD Distribution: Its Use in the Detection of Linkage. Frontiers in Public Health, 2016, 4, 259.	1.3	1
243	BP Neural Network Could Help Improve Pre-miRNA Identification in Various Species. BioMed Research International, 2016, 2016, 1-11.	0.9	33
244	Pretata: predicting TATA binding proteins with novel features and dimensionality reduction strategy. BMC Systems Biology, 2016, 10, 114.	3.0	143
245	Identification of DEP domain-containing proteins by a machine learning method and experimental analysis of their expression in human HCC tissues. Scientific Reports, 2016, 6, 39655.	1.6	16
246	miR-isomiRExp: a web-server for the analysis of expression of miRNA at the miRNA/isomiR levels. Scientific Reports, 2016, 6, 23700.	1.6	44
247	HPTree: Reconstructing phylogenetic trees for ultra-large unaligned DNA sequences via NJ model and Hadoop. , $2016, , .$		8
248	Multiple sequence alignment and reconstructing phylogenetic trees with Hadoop., 2016,,.		0
249	Latent factor model with heterogeneous similarity regularization for predicting gene-disease associations. , $2016, , .$		3
250	Analysis of the chemical toxicity effects using the enrichment of Gene Ontology terms and KEGG pathways. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2619-2626.	1.1	15
251	A network-based method for the identification of putative genes related to infertility. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2716-2724.	1.1	20
252	BDSCyto: An Automated Approach for Identifying Cytokines Based on Best Dimension Searching. Lecture Notes in Computer Science, 2016, , 713-725.	1.0	0

#	Article	IF	CITATIONS
253	Hierarchical support vector machine based structural classification with fused hierarchies. Neurocomputing, 2016, 214, 86-92.	3.5	10
254	Annotation-retrieval reinforcement by visual cognition modeling on manifold. Neurocomputing, 2016, 215, 150-159.	3.5	2
255	Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks. Briefings in Bioinformatics, 2016, 17, 193-203.	3.2	307
256	Finding the Best Classification Threshold in Imbalanced Classification. Big Data Research, 2016, 5, 2-8.	2.6	148
257	A novel features ranking metric with application to scalable visual and bioinformatics data classification. Neurocomputing, 2016, 173, 346-354.	3.5	353
258	A Comprehensive Analysis of miRNA/isomiR Expression with Gender Difference. PLoS ONE, 2016, 11, e0154955.	1.1	34
259	Which statistical significance test best detects oncomiRNAs in cancer tissues? An exploratory analysis. Oncotarget, 2016, 7, 85613-85623.	0.8	37
260	A novel machine learning method for cytokine-receptor interaction prediction. Combinatorial Chemistry and High Throughput Screening, 2016, 19, 144-152.	0.6	43
261	Protein Folds Prediction with Hierarchical Structured SVM. Current Proteomics, 2016, 13, 79-85.	0.1	112
262	Selective ensemble learning with parallel optimization and hierarchical selection., 2015,,.		1
262	Selective ensemble learning with parallel optimization and hierarchical selection., 2015,,. SeedsGraph: an efficient assembler for next-generation sequencing data. BMC Medical Genomics, 2015, 8, S13.	0.7	2
	SeedsGraph: an efficient assembler for next-generation sequencing data. BMC Medical Genomics, 2015,	0.7	
263	SeedsGraph: an efficient assembler for next-generation sequencing data. BMC Medical Genomics, 2015, 8, S13. Prediction of MicroRNA-Disease Associations Based on Social Network Analysis Methods. BioMed		2
263 264	SeedsGraph: an efficient assembler for next-generation sequencing data. BMC Medical Genomics, 2015, 8, S13. Prediction of MicroRNA-Disease Associations Based on Social Network Analysis Methods. BioMed Research International, 2015, 2015, 1-9. An Improved Protein Structural Classes Prediction Method by Incorporating Both Sequence and	0.9	140
263 264 265	SeedsGraph: an efficient assembler for next-generation sequencing data. BMC Medical Genomics, 2015, 8, S13. Prediction of MicroRNA-Disease Associations Based on Social Network Analysis Methods. BioMed Research International, 2015, 2015, 1-9. An Improved Protein Structural Classes Prediction Method by Incorporating Both Sequence and Structure Information. IEEE Transactions on Nanobioscience, 2015, 14, 339-349. Improving tRNAscan E Annotation Results via Ensemble Classifiers. Molecular Informatics, 2015, 34,	0.9	2 140 80
263 264 265 266	SeedsGraph: an efficient assembler for next-generation sequencing data. BMC Medical Genomics, 2015, 8, S13. Prediction of MicroRNA-Disease Associations Based on Social Network Analysis Methods. BioMed Research International, 2015, 2015, 1-9. An Improved Protein Structural Classes Prediction Method by Incorporating Both Sequence and Structure Information. IEEE Transactions on Nanobioscience, 2015, 14, 339-349. Improving tRNAscanâ€SE Annotation Results via Ensemble Classifiers. Molecular Informatics, 2015, 34, 761-770. Prediction and characterization of microRNAs from eleven fish species by computational methods.	0.9 2.2 1.4	2 140 80 66
264 265 266 267	SeedsGraph: an efficient assembler for next-generation sequencing data. BMC Medical Genomics, 2015, 8, S13. Prediction of MicroRNA-Disease Associations Based on Social Network Analysis Methods. BioMed Research International, 2015, 2015, 1-9. An Improved Protein Structural Classes Prediction Method by Incorporating Both Sequence and Structure Information. IEEE Transactions on Nanobioscience, 2015, 14, 339-349. Improving tRNAscan E Annotation Results via Ensemble Classifiers. Molecular Informatics, 2015, 34, 761-770. Prediction and characterization of microRNAs from eleven fish species by computational methods. Saudi Journal of Biological Sciences, 2015, 22, 374-381. Identification of cytokine via an improved genetic algorithm. Frontiers of Computer Science, 2015, 9,	0.9 2.2 1.4	2 140 80 66 15

#	Article	IF	Citations
271	The <i>Symbiodinium kawagutii</i> genome illuminates dinoflagellate gene expression and coral symbiosis. Science, 2015, 350, 691-694.	6.0	430
272	Enhanced Protein Fold Prediction Method Through a Novel Feature Extraction Technique. IEEE Transactions on Nanobioscience, 2015, 14, 649-659.	2.2	87
273	A Graphic Processing Unit Web Server for Computing Correlation Coefficients for Gene Expression Data. Journal of Computational and Theoretical Nanoscience, 2015, 12, 582-584.	0.4	0
274	Asynchronous spiking neural P systems with rules on synapses. Neurocomputing, 2015, 151, 1439-1445.	3.5	65
275	An overview of SNP interactions in genome-wide association studies. Briefings in Functional Genomics, 2015, 14, 143-155.	1.3	91
276	Identification of DNA-binding proteins by incorporating evolutionary information into pseudo amino acid composition via the top-n-gram approach. Journal of Biomolecular Structure and Dynamics, 2015, 33, 1720-1730.	2.0	80
277	Exploratory Predicting Protein Folding Model with Random Forest and Hybrid Features. Current Proteomics, 2015, 11, 289-299.	0.1	50
278	imDC: an ensemble learning method for imbalanced classification with miRNA data. Genetics and Molecular Research, 2015 , 14 , 123 - 133 .	0.3	39
279	enDNA-Prot: Identification of DNA-Binding Proteins by Applying Ensemble Learning. BioMed Research International, 2014, 2014, 1-10.	0.9	32
280	Decision Tree Classification Model for Popularity Forecast of Chinese Colleges. Journal of Applied Mathematics, 2014, 2014, 1-7.	0.4	12
281	Approaches for Recognizing Disease Genes Based on Network. BioMed Research International, 2014, 2014, 1-10.	0.9	46
282	nDNA-prot: identification of DNA-binding proteins based on unbalanced classification. BMC Bioinformatics, 2014, 15, 298.	1.2	158
283	Briefing in family characteristics of microRNAs and their applications in cancer research. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 191-197.	1.1	51
284	Identification of MicroRNA Genes and their mRNA Targets in Festuca arundinacea. Applied Biochemistry and Biotechnology, 2014, 172, 3875-3887.	1.4	10
285	Using distances between Top-n-gram and residue pairs for protein remote homology detection. BMC Bioinformatics, 2014, 15, S3.	1.2	54
286	miRClassify: An advanced web server for miRNA family classification and annotation. Computers in Biology and Medicine, 2014, 45, 157-160.	3.9	101
287	Survey of MapReduce frame operation in bioinformatics. Briefings in Bioinformatics, 2014, 15, 637-647.	3.2	160
288	Representation of fluctuation features in pathological knee joint vibroarthrographic signals using kernel density modeling method. Medical Engineering and Physics, 2014, 36, 1305-1311.	0.8	40

#	Article	IF	Citations
289	Computational identification of miRNA genes and their targets in mulberry. Russian Journal of Plant Physiology, 2014, 61, 537-542.	0.5	7
290	Improved and Promising Identification of Human MicroRNAs by Incorporating a High-Quality Negative Set. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11, 192-201.	1.9	207
291	Computational Identification of MicroRNAs and Their Targets in Perennial Ryegrass (Lolium perenne). Applied Biochemistry and Biotechnology, 2014, 173, 1011-1022.	1.4	11
292	LibD3C: Ensemble classifiers with a clustering and dynamic selection strategy. Neurocomputing, 2014, 123, 424-435.	3.5	227
293	Hierarchical Identification of MicroRNA Families for Biomedical Applications. Journal of Computational and Theoretical Nanoscience, 2014, 11, 883-887.	0.4	4
294	System-Level Insights into the Cellular Interactome of a Non-Model Organism: Inferring, Modelling and Analysing Functional Gene Network of Soybean (Glycine max). PLoS ONE, 2014, 9, e113907.	1.1	9
295	Review of Protein Subcellular Localization Prediction. Current Bioinformatics, 2014, 9, 331-342.	0.7	32
296	A Discussion of MicroRNAs in Cancers. Current Bioinformatics, 2014, 9, 453-462.	0.7	24
297	Association Studies on mtDNA and Parkinson's Disease Population Discrimination Using the Statistical Classification. Current Bioinformatics, 2014, 9, 481-489.	0.7	1
298	Probability-Based Buffer Replacement Algorithm for Flash-Based Databases. Jisuanji Xuebao/Chinese Journal of Computers, 2014, 36, 1568-1581.	0.3	3
299	Hybrid pseudo-relevance feedback for microblog retrieval. Journal of Information Science, 2013, 39, 773-788.	2.0	9
300	Identifying Multi-Functional Enzyme by Hierarchical Multi-Label Classifier. Journal of Computational and Theoretical Nanoscience, 2013, 10, 1038-1043.	0.4	45
301	An Approach for Identifying Cytokines Based on a Novel Ensemble Classifier. BioMed Research International, 2013, 2013, 1-11.	0.9	76
302	Protein Remote Homology Detection by Combining Chou's Pseudo Amino Acid Composition and Profileâ€Based Protein Representation. Molecular Informatics, 2013, 32, 775-782.	1.4	103
303	BinMemPredict: a Web Server and Software for Predicting Membrane Protein Types. Current Proteomics, 2013, 10, 2-9.	0.1	59
304	PaGenBase: A Pattern Gene Database for the Global and Dynamic Understanding of Gene Function. PLoS ONE, 2013, 8, e80747.	1.1	108
305	Hierarchical Classification of Protein Folds Using a Novel Ensemble Classifier. PLoS ONE, 2013, 8, e56499.	1,1	144
306	Computational Approaches in Detecting Non-Coding RNA. Current Genomics, 2013, 14, 371-377.	0.7	41

#	Article	IF	CITATIONS
307	BinMemPredict: a Web Server and Software for Predicting Membrane Protein Types. Current Proteomics, 2013, 888, 1-8.	0.1	5
308	PaGeFinder: quantitative identification of spatiotemporal pattern genes. Bioinformatics, 2012, 28, 1544-1545.	1.8	48
309	Computational Analysis of miRNA Target Identification. Current Bioinformatics, 2012, 7, 512-525.	0.7	20
310	Regulatory long non-coding RNA and its functions. Journal of Physiology and Biochemistry, 2012, 68, 611-618.	1.3	93
311	Research of Efficient C/S Model Based File Transfer Method. Physics Procedia, 2012, 33, 315-321.	1.2	1
312	A Novel Center Star Multiple Sequence Alignment Algorithm Based on Affine Gap Penalty and K-Band. Physics Procedia, 2012, 33, 322-327.	1.2	12
313	Construction of baculovirus expression vector of miRNAs and its expression in insect cells. Molecular Genetics, Microbiology and Virology, 2012, 27, 85-90.	0.0	4
314	A Global Characterization and Identification of Multifunctional Enzymes. PLoS ONE, 2012, 7, e38979.	1.1	53
315	Hadoop Applications in Bioinformatics. , 2012, , .		6
316	Sequencing and de novo Analysis of Crassostrea angulata (Fujian Oyster) from 8 Different Developing Phases Using 454 GSFlx. PLoS ONE, 2012, 7, e43653.	1.1	63
317	Benchmark comparison of ab initio microRNA identification methods and software. Genetics and Molecular Research, 2012, 11, 4525-4538.	0.3	9
318	Improved method for predicting protein fold patterns with ensemble classifiers. Genetics and Molecular Research, 2012, 11, 174-181.	0.3	21
319	The regulation of silkworm fibroin L chain production by miRNA-965 and miRNA-1926 in insect cells. Russian Journal of Bioorganic Chemistry, 2012, 38, 417-421.	0.3	9
320	Research on Cloud Databases. Ruan Jian Xue Bao/Journal of Software, 2012, 23, 1148-1166.	0.3	20
321	In silico Detection of Novel MicroRNAs Genes in Soybean Genome. Agricultural Sciences in China, 2011, 10, 1336-1345.	0.6	15
322	Novel representation of RNA secondary structure used to improve prediction algorithms. Genetics and Molecular Research, 2011, 10, 1986-1998.	0.3	10
323	Genomic analysis of silkworm microRNA promoters and clusters. Molecular Biology, 2011, 45, 197-203.	0.4	4
324	Differential expression of microRNA-2b with potential target coding P25 in the fifth instar larvae posterior silk gland of the silkworm. Molecular Biology, 2011, 45, 576-581.	0.4	15

#	Article	IF	CITATIONS
325	Construction and detection of expression vectors of microRNA-9a in BmN cells. Journal of Zhejiang University: Science B, 2011, 12, 527-533.	1.3	13
326	The discovery approaches and detection methods of microRNAs. Molecular Biology Reports, 2011, 38, 4125-4135.	1.0	53
327	Biological functions of microRNAs: a review. Journal of Physiology and Biochemistry, 2011, 67, 129-139.	1.3	568
328	Development of particle swarm optimization algorithm., 2011,,.		1
329	Maintaining Internal Consistency of Report for Real-Time OLAP with Layer-Based View. Lecture Notes in Computer Science, 2011, , 143-154.	1.0	5
330	Genomic analysis of silkworm microRNA promoters and clusters. Molekulyarnaya Biologiya, 2011, 45, 225-30.	0.5	2
331	DuplexFinder: Predicting the miRNA miRNA* duplex from the animal precursors. International Journal of Bioinformatics Research and Applications, 2010, 6, 69.	0.1	2
332	Biological functions of MicroRNAs. Russian Journal of Bioorganic Chemistry, 2010, 36, 684-689.	0.3	33
333	A study of miRNAs targets prediction and experimental validation. Protein and Cell, 2010, 1, 979-986.	4.8	51
334	Computational identification and characteristics of novel microRNAs from the silkworm (Bombyx) Tj ETQq0 0 0	rgBT/Ove 1.0	rlock 10 Tf 50 47
335	Mining SNPs from EST sequences using filters and ensemble classifiers. Genetics and Molecular Research, 2010, 9, 820-834.	0.3	9
336	TiSGeD: a database for tissue-specific genes. Bioinformatics, 2010, 26, 1273-1275.	1.8	132
337	Genomic Analysis of MicroRNA Promoters and Their Cis-Acting Elements in Soybean. Agricultural Sciences in China, 2010, 9, 1561-1570.	0.6	11
338	Brainlab: a Python toolkit to aid in the design, simulation, and analysis of spiking neural networks with the NeoCortical Simulator. Frontiers in Neuroinformatics, 2009, 3, 16.	1.3	13
339	Predicting RNA secondary structure based on the class information and Hopfield network. Computers in Biology and Medicine, 2009, 39, 206-214.	3.9	21
340	Novel H/ACA Box snoRNA Mining and Secondary Structure Prediction Algorithms. Lecture Notes in Computer Science, 2009, , 538-546.	1.0	0
341	Interest filter vs. interest operator: Face recognition using Fisher linear discriminant based on interest filter representation. Pattern Recognition Letters, 2008, 29, 1849-1857.	2.6	6
342	A Novel Comparative Sequence Analysis Method for ncRNA Secondary Structure Prediction without Multiple Sequence Alignment. , 2008, , .		0

#	Article	IF	Citations
343	An Improved Diverse Density Algorithm for Multiple Overlapped Instances. , 2008, , .		1
344	Framework and implications of virtual neurorobotics. Frontiers in Neuroscience, 2008, 2, 123-128.	1.4	7
345	An Improved Quick Algorithm for Aligning DNA/RNA Sequences. , 2007, , .		0
346	RNA Secondary Structure Prediction Based on Forest Representation and Genetic Algorithm., 2007,,.		3
347	Virtual neurorobotics (VNR) to accelerate development of plausible neuromorphic brain architectures. Frontiers in Neurorobotics, 2007, 1 , 1 .	1.6	32
348	Kinetic models of spike-timing dependent plasticity and their functional consequences in detecting correlations. Biological Cybernetics, 2007, 97, 81-97.	0.6	24
349	Analog-digital simulations of full conductance-based networks of spiking neurons with spike timing dependent plasticity. Network: Computation in Neural Systems, 2006, 17, 211-233.	2.2	14
350	BIOPHYSICAL AND PHENOMENOLOGICAL MODELS OF MULTIPLE SPIKE INTERACTIONS IN SPIKE-TIMING DEPENDENT PLASTICITY. International Journal of Neural Systems, 2006, 16, 79-97.	3.2	56
351	Material Classification Using Random Forest. Advanced Materials Research, 0, 301-303, 73-79.	0.3	1