
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6726413/publications.pdf Version: 2024-02-01

ΠΑΥΙΟ Η ΕΛΡΒ

#	Article	IF	CITATIONS
1	Probing the Neural Circuitry Targets of Neurotoxicants In Vivo Through High Density Silicon Probe Brain Implants. Frontiers in Toxicology, 2022, 4, 836427.	3.1	2
2	Role of Pharmacological Modulation of Tonic Inhibition in Hippocampal Sharp Wave Ripples Amplitude and Place Cell Firing Dynamics. FASEB Journal, 2022, 36, .	0.5	0
3	GABA _B receptors in GtoPdb v.2021.2. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
4	Prodromal dysfunction of α5GABA-A receptor modulated hippocampal ripples occurs prior to neurodegeneration in the TgF344-AD rat model of Alzheimer's disease. Heliyon, 2021, 7, e07895.	3.2	8
5	Data from single nuclei RNAâ€sequencing reveals a prodromal gene network response in excitatory neurons of a humanized rat Alzheimer's disease model. Alzheimer's and Dementia, 2021, 17, e058589.	0.8	0
6	Neurosteroid Actions in Memory and Neurologic/Neuropsychiatric Disorders. Frontiers in Endocrinology, 2019, 10, 169.	3.5	69
7	GABA _B receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0
8	Combined administration of levetiracetam and valproic acid attenuates age-related hyperactivity of CA3 place cells, reduces place field area, and increases spatial information content in aged rat hippocampus. Hippocampus, 2015, 25, 1541-1555.	1.9	44
9	Pregnenolone Sulfate as a Modulator of Synaptic Plasticity. FASEB Journal, 2015, 29, 1019.13.	0.5	0
10	Younger age at onset of sporadic Parkinson's disease among subjects occupationally exposed to metals and pesticides. Interdisciplinary Toxicology, 2014, 7, 123-133.	1.0	33
11	A Role for Picomolar Concentrations of Pregnenolone Sulfate in Synaptic Activity-Dependent Ca2+ Signaling and CREB Activation. Molecular Pharmacology, 2014, 86, 390-398.	2.3	12
12	Pregnenolone sulfate as a modulator of synaptic plasticity. Psychopharmacology, 2014, 231, 3537-3556.	3.1	47
13	GABAâ€induced uncoupling of GABA/benzodiazepine site interactions is associated with increased phosphorylation of the GABA _A receptor. Journal of Neuroscience Research, 2014, 92, 1054-1061.	2.9	10
14	Targeting the Modulation of Neural Circuitry for the Treatment of Anxiety Disorders. Pharmacological Reviews, 2014, 66, 1002-1032.	16.0	47
15	An interview with David H Farb, Section Editor for Basic Pharmacology. BMC Pharmacology & Toxicology, 2013, 14, 42.	2.4	0
16	Polycomblike protein PHF1b: a transcriptional sensor for GABA receptor activity. BMC Pharmacology & Toxicology, 2013, 14, 37.	2.4	8
17	The Neuroactive Steroid Pregnenolone Sulfate Stimulates Trafficking of Functional <i>N</i> -Methyl D-Aspartate Receptors to the Cell Surface via a Noncanonical, G Protein, and Ca ²⁺ -Dependent Mechanism. Molecular Pharmacology, 2013, 84, 261-274.	2.3	33
18	Pregnanolone Hemisuccinate Inhibits NMDA Receptors with Selectivity for the NR1A/2A Subtype. FASEB Journal, 2013, 27, 1174.3.	0.5	0

#	Article	IF	CITATIONS
19	Brainâ€derived neurotrophic factor uses CREB and Egr3 to regulate NMDA receptor levels in cortical neurons. Journal of Neurochemistry, 2012, 120, 210-219.	3.9	66
20	A steroid modulatory domain in NR2A collaborates with NR1 exonâ€5 to control NMDAR modulation by pregnenolone sulfate and protons. Journal of Neurochemistry, 2011, 119, 486-496.	3.9	25
21	Genetic disruption of the autism spectrum disorder risk gene PLAUR induces GABAA receptor subunit changes. Neuroscience, 2010, 168, 797-810.	2.3	24
22	Docking of 1,4-Benzodiazepines in the α ₁ /γ ₂ GABA _A Receptor Modulator Site. Molecular Pharmacology, 2009, 76, 440-450.	2.3	25
23	Pharmacological Properties of DOV 315,090, an ocinaplon metabolite. BMC Pharmacology, 2008, 8, 11.	0.4	14
24	A Minimal Promoter for the GABAA Receptor α6-Subunit Gene Controls Tissue Specificity. Journal of Neurochemistry, 2008, 74, 1858-1869.	3.9	24
25	Pregnenolone sulfate induces NMDA receptor dependent release of dopamine from synaptic terminals in the striatum. Journal of Neurochemistry, 2008, 107, 510-521.	3.9	25
26	Surface Expression of GABAA Receptors Is Transcriptionally Controlled by the Interplay of cAMP-response Element-binding Protein and Its Binding Partner Inducible cAMP Early Repressor. Journal of Biological Chemistry, 2008, 283, 9328-9340.	3.4	58
27	Nanomolar Concentrations of Pregnenolone Sulfate Enhance Striatal Dopamine Overflow in Vivo. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 840-845.	2.5	11
28	Absorption (Sound Absorption). , 2008, , 3-3.		0
29	Mechanisms of GABAA and GABAB Receptor Gene Regulation and Cell Surface Expression. , 2007, , 169-238.		2
30	Sulfated steroids as endogenous neuromodulators. Pharmacology Biochemistry and Behavior, 2006, 84, 555-567.	2.9	101
31	The Anxioselective Agent 7-(2-Chloropyridin-4-yl)pyrazolo-[1,5-a]-pyrimidin-3-yl](pyridin-2-yl)methanone (DOV 51892) Is More Efficacious Than Diazepam at Enhancing GABA-Gated Currents at α1 Subunit-Containing GABAA Receptors. Journal of Pharmacology and Experimental Therapeutics, 2006, 319. 1244-1252.	2.5	39
32	Benzodiazepine modulation of partial agonist efficacy and spontaneously active GABAA receptors supports an allosteric model of modulation. British Journal of Pharmacology, 2005, 145, 894-906.	5.4	69
33	Selective anxiolysis produced by ocinaplon, a GABAA receptor modulator. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7380-7385.	7.1	119
34	GABA Induces Activity Dependent Delayed-onset Uncoupling of GABA/Benzodiazepine Site Interactions in Neocortical Neurons. Journal of Biological Chemistry, 2005, 280, 20954-20960.	3.4	27
35	A steroid modulatory domain on NR2B controls N-methyl-D-aspartate receptor proton sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8198-8203.	7.1	90
36	cAMP Response Element-Binding Protein, Activating Transcription Factor-4, and Upstream Stimulatory Factor Differentially Control Hippocampal GABABR1a and GABABR1b Subunit Gene Expression through Alternative Promoters. Journal of Neuroscience, 2004, 24, 6115-6126.	3.6	100

#	Article	IF	CITATIONS
37	Inhibition of NMDA-induced striatal dopamine release and behavioral activation by the neuroactive steroid 3α-hydroxy-5β-pregnan-20-one hemisuccinate. Journal of Neurochemistry, 2004, 86, 92-101.	3.9	16
38	Differential expression of ?-aminobutyric acid type B receptor subunit mRNAs in the developing nervous system and receptor coupling to adenylyl cyclase in embryonic neurons. Journal of Comparative Neurology, 2004, 473, 16-29.	1.6	21
39	Effects of prenatal malnutrition on GABAA receptor α1, α3 and β2 mRNA levels. NeuroReport, 2003, 14, 1731-1735.	1.2	30
40	Direct Modulation of Amino Acid Receptors by Neuroactive Steroids. Frontiers in Neuroscience, 2003, ,	0.0	1
41	Prenatal protein malnutrition reduces β2, β3 and γ2L GABAA receptor subunit mRNAs in the adult septum. European Journal of Pharmacology, 2002, 446, 201-202.	3.5	20
42	Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids. British Journal of Pharmacology, 2002, 135, 901-909.	5.4	156
43	Human GABABR genomic structure: evidence for splice variants in GABABR1 but not GABABR2. Gene, 2001, 278, 63-79.	2.2	48
44	Distinct signal transduction pathways for GABA-induced GABAA receptor down-regulation and uncoupling in neuronal culture: a role for voltage-gated calcium channels. Journal of Neurochemistry, 2001, 78, 1114-1126.	3.9	41
45	Turnover and Down-Regulation of GABAA Receptor α1, β2S, and γ1 Subunit mRNAs by Neurons in Culture. Journal of Neurochemistry, 2000, 74, 1041-1048.	3.9	40
46	An initiator element mediates autologous downregulation of the human type A gamma -aminobutyric acid receptor beta 1 subunit gene. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8600-8605.	7.1	46
47	Dueling Enigmas: Neurosteroids and Sigma Receptors in the Limelight. Science Signaling, 2000, 2000, pe1-pe1.	3.6	12
48	Sulfated and unsulfated steroids modulate γ-aminobutyric acidA receptor function through distinct sites. Brain Research, 1999, 830, 72-87.	2.2	316
49	Molecular Identification of the Human GABABR2: Cell Surface Expression and Coupling to Adenylyl Cyclase in the Absence of GABABR1. Molecular and Cellular Neurosciences, 1999, 13, 180-191.	2.2	108
50	Modulation of Ionotropic Glutamate Receptors by Neuroactive Steroids. , 1999, , 167-190.		16
51	Pregnenolone sulfate exacerbates NMDA-induced death of hippocampal neurons. Brain Research, 1998, 803, 129-136.	2.2	50
52	Neurosteroid modulation of recombinant ionotropic glutamate receptors. Brain Research, 1998, 803, 153-160.	2.2	78
53	Neuroprotective activity of a new class of steroidal inhibitors of the N-methyl-D-aspartate receptor. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 10450-10454.	7.1	105
54	Distinct Sites for Inverse Modulation of <i>N</i> -Methyl-d-Aspartate Receptors by Sulfated Steroids. Molecular Pharmacology, 1997, 52, 1113-1123.	2.3	204

#	Article	IF	CITATIONS
55	17β-Estradiol protects against NMDA-induced excitotoxicity by direct inhibition of NMDA receptors. Brain Research, 1997, 761, 338-341.	2.2	264
56	Î ³ -Aminobutyric acidA receptor regulation: heterologous uncoupling of modulatory site interactions induced by chronic steroid, barbiturate, benzodiazepine, or GABA treatment in culture. Brain Research, 1996, 707, 100-109.	2.2	66
57	From ion currents to genomic analysis: Recent advances in GABAA receptor research. Synapse, 1995, 21, 189-274.	1.2	476
58	Mapping of the α4 subunit gene (GABRA4) to human chromosome 4 defines an α2—α4—β1—γ1 gene clus further evidence that modern GABAA receptor gene clusters are derived from an ancestral cluster. Genomics, 1995, 26, 580-586.	ster: 2.9	69
59	Mapping of the β2 Subunit Gene (GABRB2) to Microdissected Human Chromosome 5q34-q35 Defines a Gene Cluster for the Most Abundant GABAA Receptor Isoform. Genomics, 1994, 23, 528-533.	2.9	59
60	Dual activation of GABAA and glycine receptors by β-alanine: inverse modulation by progesterone and 5α-pregnan-3α-ol-20-one. European Journal of Pharmacology, 1993, 246, 239-246.	2.6	63
61	Pregnenolone sulfate augments NMDA receptor mediated increases in intracellular Ca2+ in cultured rat hippocampal neurons. Neuroscience Letters, 1992, 141, 30-34.	2.1	153
62	Molecular and cellular mechanisms of GABA/benzodiazepine-receptor regulation: Electrophysiological and biochemical studies. Neurochemical Research, 1990, 15, 175-191.	3.3	23
63	Ethanol potentiates GABA- and glycine-induced chloride currents in chick spinal cord neurons. Brain Research, 1988, 455, 377-380.	2.2	180
64	Benzodiazepine Stimulation of Gamma-Aminobutyric Acid Receptor Desensitization in Chick Spinal Cord Cell Cultures. Annals of the New York Academy of Sciences, 1988, 529, 304-306.	3.8	0
65	Correlative Binding and Electrophysiological Studies of the Photoaffinity-labeled Benzodiazepine Receptor. Annals of the New York Academy of Sciences, 1986, 463, 183-185.	3.8	1
66	Enhancement of Benzodiazepine Binding by GABA Is Reduced Rapidly during Chronic Exposure to Flurazepam. Annals of the New York Academy of Sciences, 1986, 463, 221-223.	3.8	10
67	Benzodiazepine receptor photoaffinity labeling: Correlation of function with binding. European Journal of Pharmacology, 1985, 110, 171-180.	3.5	15
68	Benzodiazepine receptor synthesis and degradation by neurons in culture. Science, 1984, 226, 857-860.	12.6	48
69	Modulation of Neuronal Function through Benzodiazepine Receptors: Biochemical and Electrophysiological Studies of Neurons in Primary Monolayer Cell Culture. Annals of the New York Academy of Sciences, 1984, 435, 1-31.	3.8	41
70	Multiple embryonic benzodiazepine binding sites: Evidence for functionality. Life Sciences, 1983, 33, 2061-2069.	4.3	20
71	The Inactivation of ?-Aminobutyric Acid Transaminase in Dissociated Neuronal Cultures from Spinal Cord. Journal of Neurochemistry, 1981, 36, 985-990.	3.9	16
72	Different forms of pig liver esterase. Archives of Biochemistry and Biophysics, 1980, 203, 214-226.	3.0	42

#	Article	IF	CITATIONS
73	Dependence on pH of the activity of pig liver esterase. Archives of Biochemistry and Biophysics, 1980, 203, 227-235.	3.0	11
74	Intrathecal Capsaicin Depletes Substance P in the Rat Spinal Cord and Produces Prolonged Thermal Analgesia. Science, 1979, 206, 481-483.	12.6	299
75	Uptake and release of [3H]gamma-aminobutyric acid by embryonic spinal cord neurons in dissociated cell culture Journal of Cell Biology, 1979, 80, 651-661.	5.2	68
76	Chlordiazepoxide selectively augments GABA action in spinal cord cell cultures. Nature, 1977, 269, 342-344.	27.8	272