Mukul Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6725795/publications.pdf

Version: 2024-02-01

39 papers

2,752 citations

361413 20 h-index 377865 34 g-index

40 all docs

40 docs citations

40 times ranked

3674 citing authors

#	Article	IF	CITATIONS
1	The realization of nipip HIT photodetectors with an optimized thickness of intrinsic a-Si:H. Materials Science in Semiconductor Processing, 2022, 144, 106590.	4.0	O
2	New light to illuminate the world!!! Hearty congratulations to our Associate Editor Professor Hiroshi Amano on getting Nobel Prize!!!. Materials Express, 2015, 5, 1-2.	0.5	6
3	Welcome Aboard <i>Materials Express</i> . Materials Express, 2011, 1, 1-9.	0.5	O
4	Application of Carbon Nanotubes to Nylon Composite. Japanese Journal of Applied Physics, 2011, 50, 01AF04.	1.5	2
5	Application of Carbon Nanotubes to Nylon Composite. Japanese Journal of Applied Physics, 2011, 50, 01AF04.	1.5	O
6	A Special Issue on Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2010, 10, 3723-3725.	0.9	1
7	Tailoring the field emission property of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution. Carbon, 2010, 48, 191-200.	10.3	122
8	Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production. Journal of Nanoscience and Nanotechnology, 2010, 10, 3739-3758.	0.9	1,124
9	Facile Decoration of Platinum Nanoparticles on Carbon-Nitride Nanotubes via Microwave-Assisted Chemical Reduction and Their Optimization for Field-Emission Application. Journal of Physical Chemistry C, 2010, 114, 5107-5112.	3.1	26
10	Controllable growth of highly N-doped carbon nanotubes from imidazole: a structural, spectroscopic and field emission study. Journal of Materials Chemistry, 2010, 20, 4128.	6.7	54
11	Nitrogen-Mediated Wet-Chemical Formation of Carbon Nitride/ZnO Heterojunctions for Enhanced Field Emission. Langmuir, 2010, 26, 5527-5533.	3.5	36
12	Micro-structural, electron-spectroscopic and field-emission studies of carbon nitride nanotubes grown from cage-like and linear carbon sources. Carbon, 2009, 47, 1565-1575.	10.3	102
13	Fabrication of ZnO Nanospikes and Nanopillars on ITO Glass by Templateless Seed-Layer-Free Electrodeposition and Their Field-Emission Properties. ACS Applied Materials & Electrodeposition and Their Field-Emission Properties. ACS Applied Materials & Electrodeposition and Their Field-Emission Properties. ACS Applied Materials & Electrodeposition and Their Field-Emission Properties. ACS Applied Materials & Electrodeposition and Their Field-Emission Properties. ACS Applied Materials & Electrodeposition and Their Field-Emission Properties. ACS Applied Materials & Electrodeposition and Their Field-Emission Properties. ACS Applied Materials & Electrodeposition and Their Field-Emission Properties. ACS Applied Materials & Electrodeposition and Their Field-Emission Properties. ACS Applied Materials & Electrodeposition Electrodeposition and Their Field-Emission Properties. ACS Applied Materials & Electrodeposition Electrodeposi	8.0	53
14	One-Dimensional and Two-Dimensional ZnO Nanostructured Materials on a Plastic Substrate and Their Field Emission Properties. Journal of Physical Chemistry C, 2008, 112, 7093-7096.	3.1	47
15	Gigas Growth of Carbon Nanotubes. Defence Science Journal, 2008, 58, 496-503.	0.8	26
16	Carbon Nanotubes from Camphor: An Environment-Friendly Nanotechnology. Journal of Physics: Conference Series, 2007, 61, 643-646.	0.4	53
17	Synthesis of Beaded and Entwined Carbon Nanofibers in Ni : Al Alloy Catalyst. Journal of Nanoscience and Nanotechnology, 2007, 7, 1034-1038.	0.9	0
18	The use of camphor-grown carbon nanotube array as an efficient field emitter. Carbon, 2007, 45, 1899-1904.	10.3	65

#	Article	IF	Citations
19	Carbon nanotubes by spray pyrolysis of turpentine oil at different temperatures and their studies. Microporous and Mesoporous Materials, 2006, 96, 184-190.	4.4	91
20	VERTICALLY ALIGNED CARBON NANOTUBES AT DIFFERENT TEMPERATURES BY SPRAY PYROLYSIS TECHNIQUES. International Journal of Modern Physics B, 2006, 20, 4965-4972.	2.0	6
21	Controlling the diameter distribution of carbon nanotubes grown from camphor on a zeolite support. Carbon, 2005, 43, 533-540.	10.3	150
22	Growth of vertically aligned carbon nanotubes on silicon and quartz substrate by spray pyrolysis of a natural precursor: Turpentine oil. Chemical Physics Letters, 2005, 414, 6-10.	2.6	95
23	Growing carbon nanotubes. Materials Today, 2004, 7, 22-29.	14.2	180
24	Field emission from camphor–pyrolyzed carbon nanotubes. Chemical Physics Letters, 2004, 385, 161-165.	2.6	50
25	A simple method of producing aligned carbon nanotubes from an unconventional precursor – Camphor. Chemical Physics Letters, 2003, 374, 521-526.	2.6	126
26	Camphor–a botanical precursor producing garden of carbon nanotubes. Diamond and Related Materials, 2003, 12, 998-1002.	3.9	65
27	Single-wall and multi-wall carbon nanotubes from camphor—a botanical hydrocarbon. Diamond and Related Materials, 2003, 12, 1845-1850.	3.9	115
28	Nano-Octopus: A New Form of Branching Carbon Nanofiber. Journal of Nanoscience and Nanotechnology, 2003, 3, 215-217.	0.9	15
29	Nano-range octopus type vapor grown carbon fibers from camphor. Molecular Crystals and Liquid Crystals, 2002, 387, 151-155.	0.9	o
30	Carbon nanotubes from camphor by catalytic cvd. Molecular Crystals and Liquid Crystals, 2002, 387, 117-121.	0.9	21
31	Electron field emission from carbon films grown from pyrolysis of kerosene. Diamond and Related Materials, 2001, 10, 883-888.	3.9	3
32	Study of camphor-pyrolysed carbon electrode in a lithium rechargeable cell. Materials Chemistry and Physics, 2000, 66, 83-89.	4.0	10
33	Lithium-Ion Intercalation into Carbons Derived from Pyrolysis of Camphor. Molecular Crystals and Liquid Crystals, 2000, 340, 523-528.	0.3	7
34	Synthesis of conducting fibers, nanotubes, and thin films of carbon from commercial kerosene. Materials Research Bulletin, 1999, 34, 791-801.	5.2	16
35	Semiconducting carbon films from a natural source: camphor. Diamond and Related Materials, 1999, 8, 485-489.	3.9	13
36	Electrochemical studies of kerosene-pyrolysedcarbon films. Journal of Applied Electrochemistry, 1998, 28, 1399-1403.	2.9	3

Mukul Kumar

#	Article	IF	CITATIONS
37	Effect of pyrolyzing time and temperature on the bandgap of camphor-pyrolyzed semiconducting carbon films. Materials Chemistry and Physics, 1998, 56, 284-288.	4.0	22
38	Short-Range to Long-Range Ordering Reactions in a Ni-25Mo-8Cr Alloy. Materials Research Society Symposia Proceedings, 1990, 213, 187.	0.1	6
39	Carbon Nanotube Synthesis and Growth Mechanism. , 0, , .		38