## Anna S Akhmanova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6725612/publications.pdf

Version: 2024-02-01

225 papers

21,992 citations

75
h-index

134 g-index

412 all docs

412 docs citations

times ranked

412

18012 citing authors

| #  | Article                                                                                                                                                                         | IF               | CITATIONS     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|
| 1  | Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nature Reviews Molecular Cell Biology, 2008, 9, 309-322.                                    | 16.1             | 908           |
| 2  | Control of microtubule organization and dynamics: two ends in the limelight. Nature Reviews Molecular Cell Biology, 2015, 16, 711-726.                                          | 16.1             | 733           |
| 3  | Visualization of Microtubule Growth in Cultured Neurons via the Use of EB3-GFP (End-Binding Protein) Tj ETQq1                                                                   | 1 0.78431<br>1.7 | 4 rgBT /Overl |
| 4  | An EB1-Binding Motif Acts as a Microtubule Tip Localization Signal. Cell, 2009, 138, 366-376.                                                                                   | 13.5             | 594           |
| 5  | Dynamic Microtubules Regulate Dendritic Spine Morphology and Synaptic Plasticity. Neuron, 2009, 61, 85-100.                                                                     | 3.8              | 570           |
| 6  | Asymmetric CLASP-Dependent Nucleation of Noncentrosomal Microtubules at the trans-Golgi Network. Developmental Cell, 2007, 12, 917-930.                                         | 3.1              | 481           |
| 7  | CLASPs Are CLIP-115 and -170 Associating Proteins Involved in the Regional Regulation of Microtubule Dynamics in Motile Fibroblasts. Cell, 2001, 104, 923-935.                  | 13.5             | 462           |
| 8  | Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling.<br>Journal of Cell Biology, 2012, 196, 641-652.                               | 2.3              | 411           |
| 9  | CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. Journal of Cell Biology, 2005, 168, 141-153.                                       | 2.3              | 409           |
| 10 | STIM1 Is a MT-Plus-End-Tracking Protein Involved in Remodeling of the ER. Current Biology, 2008, 18, 177-182.                                                                   | 1.8              | 378           |
| 11 | Bicaudal-D regulates COPI-independent Golgi–ER transport by recruiting the dynein–dynactin motor complex. Nature Cell Biology, 2002, 4, 986-992.                                | 4.6              | 357           |
| 12 | TRAK/Milton Motor-Adaptor Proteins Steer Mitochondrial Trafficking to Axons and Dendrites. Neuron, 2013, 77, 485-502.                                                           | 3.8              | 336           |
| 13 | Mammalian end binding proteins control persistent microtubule growth. Journal of Cell Biology, 2009, 184, 691-706.                                                              | 2.3              | 331           |
| 14 | Rab6 Regulates Transport and Targeting of Exocytotic Carriers. Developmental Cell, 2007, 13, 305-314.                                                                           | 3.1              | 295           |
| 15 | CLASPs Attach Microtubule Plus Ends to the Cell Cortex through a Complex with LL5 $\hat{l}^2$ . Developmental Cell, 2006, 11, 21-32.                                            | 3.1              | 288           |
| 16 | Microtubule plus-end-tracking proteins: mechanisms and functions. Current Opinion in Cell Biology, 2005, 17, 47-54.                                                             | 2.6              | 278           |
| 17 | A hydrogenosome with a genome. Nature, 1998, 396, 527-528.                                                                                                                      | 13.7             | 270           |
| 18 | Bicaudal D2, Dynein, and Kinesin-1 Associate with Nuclear Pore Complexes and Regulate Centrosome and Nuclear Positioning during Mitotic Entry. PLoS Biology, 2010, 8, e1000350. | 2.6              | 268           |

| #  | Article                                                                                                                                                                                                                            | IF  | Citations |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4489-4494.                   | 3.3 | 239       |
| 20 | Microtubule +TIPs at a glance. Journal of Cell Science, 2010, 123, 3415-3419.                                                                                                                                                      | 1.2 | 236       |
| 21 | Microtubule Minus-End Stabilization by Polymerization-Driven CAMSAP Deposition. Developmental Cell, 2014, 28, 295-309.                                                                                                             | 3.1 | 235       |
| 22 | BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Molecular Biology of the Cell, 2012, 23, 4226-4241.                                                                                   | 0.9 | 231       |
| 23 | Cytoplasmic linker proteins promote microtubule rescue in vivo. Journal of Cell Biology, 2002, 159, 589-599.                                                                                                                       | 2.3 | 224       |
| 24 | Centralspindlin and $\hat{l}_{\pm}$ -catenin regulate Rho signalling at the epithelial zonula adherens. Nature Cell Biology, 2012, 14, 818-828.                                                                                    | 4.6 | 224       |
| 25 | LIS1, CLIP-170's Key to the Dynein/Dynactin Pathway. Molecular and Cellular Biology, 2002, 22, 3089-3102.                                                                                                                          | 1.1 | 222       |
| 26 | Microtubule Plus End: A Hub of Cellular Activities. Traffic, 2006, 7, 499-507.                                                                                                                                                     | 1.3 | 205       |
| 27 | Motor Neuron Disease-Associated Mutant Vesicle-Associated Membrane Protein-Associated Protein (VAP) B Recruits Wild-Type VAPs into Endoplasmic Reticulum-Derived Tubular Aggregates. Journal of Neuroscience, 2007, 27, 9801-9815. | 1.7 | 203       |
| 28 | Combined CRISPRi/a-Based Chemical Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 2017, 68, 210-223.e6.                                                                               | 4.5 | 197       |
| 29 | Bicaudal D induces selective dynein-mediated microtubule minus end-directed transport. EMBO Journal, 2003, 22, 6004-6015.                                                                                                          | 3.5 | 196       |
| 30 | Microtubule Minus-End Binding Protein CAMSAP2 Controls Axon Specification and Dendrite Development. Neuron, 2014, 82, 1058-1073.                                                                                                   | 3.8 | 193       |
| 31 | A Proteome-wide Screen for Mammalian SxIP Motif-Containing Microtubule Plus-End Tracking Proteins. Current Biology, 2012, 22, 1800-1807.                                                                                           | 1.8 | 192       |
| 32 | Linking molecular motors to membrane cargo. Current Opinion in Cell Biology, 2010, 22, 479-487.                                                                                                                                    | 2.6 | 191       |
| 33 | EB1 and EB3 Control CLIP Dissociation from the Ends of Growing Microtubules. Molecular Biology of the Cell, 2005, 16, 5334-5345.                                                                                                   | 0.9 | 182       |
| 34 | Structure-function relationship of CAP-Gly domains. Nature Structural and Molecular Biology, 2007, 14, 959-967.                                                                                                                    | 3.6 | 176       |
| 35 | Microtubule Minus-End-Targeting Proteins. Current Biology, 2015, 25, R162-R171.                                                                                                                                                    | 1.8 | 172       |
| 36 | TRIM46 Controls Neuronal Polarity and Axon Specification by Driving the Formation of Parallel Microtubule Arrays. Neuron, 2015, 88, 1208-1226.                                                                                     | 3.8 | 170       |

| #  | Article                                                                                                                                                                                | lF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Microtubule-Organizing Centers. Annual Review of Cell and Developmental Biology, 2017, 33, 51-75.                                                                                      | 4.0  | 169       |
| 38 | Dynamic microtubules regulate the local concentration of E-cadherin at cell-cell contacts. Journal of Cell Science, 2006, 119, 1801-1811.                                              | 1.2  | 167       |
| 39 | Rab6, Rab8, and MICAL3 Cooperate in Controlling Docking and Fusion of Exocytotic Carriers. Current Biology, 2011, 21, 967-974.                                                         | 1.8  | 167       |
| 40 | Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115 haploinsufficiency to neurodevelopmental abnormalities in mice. Nature Genetics, 2002, 32, 116-127. | 9.4  | 163       |
| 41 | Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization. Journal of Cell Biology, 2004, 166, 1003-1014.                                      | 2.3  | 159       |
| 42 | Role of CLASP2 in Microtubule Stabilization and the Regulation of Persistent Motility. Current Biology, 2006, 16, 2259-2264.                                                           | 1.8  | 159       |
| 43 | Dynein Recruitment to Nuclear Pores Activates Apical Nuclear Migration and Mitotic Entry in Brain Progenitor Cells. Cell, 2013, 154, 1300-1313.                                        | 13.5 | 158       |
| 44 | CFEOM1-Associated Kinesin KIF21A Is a Cortical Microtubule Growth Inhibitor. Developmental Cell, 2013, 27, 145-160.                                                                    | 3.1  | 157       |
| 45 | Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions. ELife, 2016, 5, .                                                   | 2.8  | 150       |
| 46 | Microtubule minus-end regulation at spindle poles by an ASPM–katanin complex. Nature Cell Biology, 2017, 19, 480-492.                                                                  | 4.6  | 147       |
| 47 | Pericentrosomal targeting of Rab6 secretory vesicles by Bicaudal-D-related protein 1 (BICDR-1) regulates neuritogenesis. EMBO Journal, 2010, 29, 1637-1651.                            | 3.5  | 144       |
| 48 | Regulation of microtubule dynamic instability. Biochemical Society Transactions, 2009, 37, 1007-1013.                                                                                  | 1.6  | 137       |
| 49 | MAP2 Defines a Pre-axonal Filtering Zone to Regulate KIF1- versus KIF5-Dependent Cargo Transport in Sensory Neurons. Neuron, 2017, 94, 347-362.e7.                                     | 3.8  | 134       |
| 50 | In Vitro Reconstitution of the Functional Interplay between MCAK and EB3 at Microtubule Plus Ends. Current Biology, 2010, 20, 1717-1722.                                               | 1.8  | 130       |
| 51 | Actin–microtubule coordination at growing microtubule ends. Nature Communications, 2014, 5, 4778.                                                                                      | 5.8  | 126       |
| 52 | Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends in Microbiology, 1999, 7, 441-447.                                                                            | 3.5  | 124       |
| 53 | N-WASP regulates the epithelial junctional actin cytoskeleton through a non-canonical post-nucleation pathway. Nature Cell Biology, 2011, 13, 934-943.                                 | 4.6  | 122       |
| 54 | A Complex of Kif18b and MCAK Promotes Microtubule Depolymerization and Is Negatively Regulated by Aurora Kinases. Current Biology, 2011, 21, 1356-1365.                                | 1.8  | 121       |

| #  | Article                                                                                                                                                                                            | IF  | Citations |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Arabidopsis BIRD Zinc Finger Proteins Jointly Stabilize Tissue Boundaries by Confining the Cell Fate Regulator SHORT-ROOT and Contributing to Fate Specification. Plant Cell, 2015, 27, 1185-1199. | 3.1 | 121       |
| 56 | Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Archives of Microbiology, 2003, 180, 134-141.                                                     | 1.0 | 117       |
| 57 | SLAIN2 links microtubule plus end–tracking proteins and controls microtubule growth in interphase.<br>Journal of Cell Biology, 2011, 193, 1083-1099.                                               | 2.3 | 116       |
| 58 | Molecular Pathway of Microtubule Organization at the Golgi Apparatus. Developmental Cell, 2016, 39, 44-60.                                                                                         | 3.1 | 114       |
| 59 | MAP7 family proteins regulate kinesin-1 recruitment and activation. Journal of Cell Biology, 2019, 218, 1298-1318.                                                                                 | 2.3 | 114       |
| 60 | CLASP Suppresses Microtubule Catastrophes through a Single TOG Domain. Developmental Cell, 2018, 46, 40-58.e8.                                                                                     | 3.1 | 110       |
| 61 | Dynamic behavior of GFP–CLIP-170 reveals fast protein turnover on microtubule plus ends. Journal of Cell Biology, 2008, 180, 729-737.                                                              | 2.3 | 107       |
| 62 | Dynein Regulator NDEL1 Controls Polarized Cargo Transport at the Axon Initial Segment. Neuron, 2016, 89, 461-471.                                                                                  | 3.8 | 107       |
| 63 | Capturing protein tails by CAP-Gly domains. Trends in Biochemical Sciences, 2008, 33, 535-545.                                                                                                     | 3.7 | 106       |
| 64 | Microtubule tip-interacting proteins: a view from both ends. Current Opinion in Cell Biology, 2011, 23, 94-101.                                                                                    | 2.6 | 106       |
| 65 | Microtubules in 3D cell motility. Journal of Cell Science, 2017, 130, 39-50.                                                                                                                       | 1.2 | 102       |
| 66 | The microtubule plus-end-tracking protein CLIP-170 associates with the spermatid manchette and is essential for spermatogenesis. Genes and Development, 2005, 19, 2501-2515.                       | 2.7 | 101       |
| 67 | NMDA Receptor Activation Suppresses Microtubule Growth and Spine Entry. Journal of Neuroscience, 2011, 31, 8194-8209.                                                                              | 1.7 | 101       |
| 68 | End-binding proteins sensitize microtubules to the action of microtubule-targeting agents. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8900-8905.  | 3.3 | 101       |
| 69 | Bicaudal D Family Adaptor Proteins Control the Velocity of Dynein-Based Movements. Cell Reports, 2014, 8, 1248-1256.                                                                               | 2.9 | 101       |
| 70 | Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp Molecular Microbiology, 2002, 44, 1441-1454.          | 1.2 | 100       |
| 71 | The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E. Molecular Microbiology, 2004, 51, 1389-1399.                     | 1.2 | 100       |
| 72 | Termination of Protofilament Elongation by Eribulin Induces Lattice Defects that Promote Microtubule Catastrophes. Current Biology, 2016, 26, 1713-1721.                                           | 1.8 | 97        |

| #  | Article                                                                                                                                                                                                                       | IF           | Citations |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 73 | EB1 and EB3 promote cilia biogenesis by several centrosome-related mechanisms. Journal of Cell Science, 2011, 124, 2539-2551.                                                                                                 | 1.2          | 95        |
| 74 | Microtubule-binding proteins CLASP1 and CLASP2 interact with actin filaments. Cytoskeleton, 2007, 64, 519-530.                                                                                                                | 4.4          | 93        |
| 75 | Bicaudal D Family of Motor Adaptors: Linking Dynein Motility to Cargo Binding. Trends in Cell Biology, 2016, 26, 327-340.                                                                                                     | 3.6          | 93        |
| 76 | Centriolar CPAP/SAS-4 Imparts Slow Processive Microtubule Growth. Developmental Cell, 2016, 37, 362-376.                                                                                                                      | 3.1          | 90        |
| 77 | Deconvolution of Buparlisib's mechanism of action defines specific PI3K and tubulin inhibitors for therapeutic intervention. Nature Communications, 2017, 8, 14683.                                                           | 5.8          | 88        |
| 78 | A structural model for microtubule minus-end recognition and protection by CAMSAP proteins. Nature Structural and Molecular Biology, 2017, 24, 931-943.                                                                       | 3 <b>.</b> 6 | 86        |
| 79 | Control of apico-basal epithelial polarity by the microtubule minus-end binding protein CAMSAP3 and spectraplakin ACF7. Journal of Cell Science, 2016, 129, 4278-4288.                                                        | 1.2          | 84        |
| 80 | LIMK1 and CLIP-115: linking cytoskeletal defects to Williams syndrome. BioEssays, 2004, 26, 141-150.                                                                                                                          | 1.2          | 83        |
| 81 | EB1 interacts with outwardly curved and straight regions of the microtubule lattice. Nature Cell Biology, 2016, 18, 1102-1108.                                                                                                | 4.6          | 81        |
| 82 | Generation and regulation of microtubule network asymmetry to drive cell polarity. Current Opinion in Cell Biology, 2020, 62, 86-95.                                                                                          | 2.6          | 81        |
| 83 | A novel mouse model with impaired dynein/dynactin function develops amyotrophic lateral sclerosis (ALS)-like features in motor neurons and improves lifespan in SOD1-ALS mice. Human Molecular Genetics, 2008, 17, 2849-2862. | 1.4          | 77        |
| 84 | Microtubule plus-end tracking proteins in neuronal development. Cellular and Molecular Life Sciences, 2016, 73, 2053-2077.                                                                                                    | 2.4          | 76        |
| 85 | EB1 and EB3 regulate microtubule minus end organization and Golgi morphology. Journal of Cell<br>Biology, 2017, 216, 3179-3198.                                                                                               | 2.3          | 76        |
| 86 | CLIP-170-Dependent Capture of Membrane Organelles by Microtubules Initiates Minus-End Directed Transport. Developmental Cell, 2009, 17, 323-333.                                                                              | 3.1          | 75        |
| 87 | Laminin-based cell adhesion anchors microtubule plus ends to the epithelial cell basal cortex through LL5 $\hat{l}$ ±/ $\hat{l}$ ². Journal of Cell Biology, 2010, 189, 901-917.                                              | 2.3          | 74        |
| 88 | A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism. Molecular Microbiology, 1999, 32, 1103-1114.                                                           | 1.2          | 71        |
| 89 | Visualizing cellular and tissue ultrastructure using Ten-fold Robust Expansion Microscopy (TREx). ELife, 2022, 11, .                                                                                                          | 2.8          | 70        |
| 90 | Developmental and Activity-Dependent miRNA Expression Profiling in Primary Hippocampal Neuron Cultures. PLoS ONE, 2013, 8, e74907.                                                                                            | 1.1          | 69        |

| #   | Article                                                                                                                                                                                                          | IF  | Citations |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Mesenchymal Cell Invasion Requires Cooperative Regulation of Persistent Microtubule Growth by SLAIN2 and CLASP1. Developmental Cell, 2016, 39, 708-723.                                                          | 3.1 | 69        |
| 92  | Optogenetic dissection of mitotic spindle positioning in vivo. ELife, 2018, 7, .                                                                                                                                 | 2.8 | 69        |
| 93  | Hydrogenosomes: convergent adaptations of mitochondria to anaerobic environments. Zoology, 2001, 104, 290-302.                                                                                                   | 0.6 | 68        |
| 94  | Microtubule minus-end regulation at a glance. Journal of Cell Science, 2019, 132, .                                                                                                                              | 1.2 | 67        |
| 95  | Touch, Grasp, Deliver and Control: Functional Crossâ€₹alk Between Microtubules and Cell Adhesions.<br>Traffic, 2009, 10, 268-274.                                                                                | 1.3 | 66        |
| 96  | Dynamic microtubules produce an asymmetric E-cadherin–Bazooka complex to maintain segment boundaries. Journal of Cell Biology, 2013, 201, 887-901.                                                               | 2.3 | 66        |
| 97  | Probing cytoskeletal modulation of passive and active intracellular dynamics using nanobody-functionalized quantum dots. Nature Communications, 2017, 8, 14772.                                                  | 5.8 | 65        |
| 98  | A highly expressed family 1 $\hat{l}^2$ -glucosidase with transglycosylation capacity from the anaerobic fungus Piromyces sp. E2. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1574, 293-303. | 2.4 | 63        |
| 99  | Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells. Nature Communications, 2015, 6, 5906.                                                                               | 5.8 | 62        |
| 100 | Structure and expression of histone H3.3 genes in <i>Drosophila melanogaster</i> hydei. Genome, 1995, 38, 586-600.                                                                                               | 0.9 | 59        |
| 101 | A Mitochondrial Ancestry of the Hydrogenosomes of Nyctotherus ovalis. Molecular Biology and Evolution, 2000, 17, 202-206.                                                                                        | 3.5 | 59        |
| 102 | A role for the Rab6B Bicaudal–D1 interaction in retrograde transport in neuronal cells. Experimental Cell Research, 2007, 313, 3408-3420.                                                                        | 1.2 | 59        |
| 103 | Insights into EB1 structure and the role of its C-terminal domain for discriminating microtubule tips from the lattice. Molecular Biology of the Cell, 2011, 22, 2912-2923.                                      | 0.9 | 59        |
| 104 | Myosin-V Opposes Microtubule-Based Cargo Transport and Drives Directional Motility on Cortical Actin. Current Biology, 2013, 23, 828-834.                                                                        | 1.8 | 59        |
| 105 | A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp. L2. Gene, 2002, 284, 103-112.                                                                                                    | 1.0 | 58        |
| 106 | The ALS8 protein VAPB interacts with the ER–Golgi recycling protein YIF1A and regulates membrane delivery into dendrites. EMBO Journal, 2013, 32, 2056-2072.                                                     | 3.5 | 58        |
| 107 | Control of endothelial cell polarity and sprouting angiogenesis by non-centrosomal microtubules. ELife, 2018, 7, .                                                                                               | 2.8 | 58        |
| 108 | Microtubule plus-end tracking proteins in differentiated mammalian cells. International Journal of Biochemistry and Cell Biology, 2008, 40, 619-637.                                                             | 1.2 | 57        |

| #   | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Cell and Molecular Biology of Microtubule Plus End Tracking Proteins. International Review of Cell and Molecular Biology, 2010, 285, 1-74.                                                                      | 1.6  | 57        |
| 110 | Linking cortical microtubule attachment and exocytosis. F1000Research, 2017, 6, 469.                                                                                                                            | 0.8  | 57        |
| 111 | ATIP3, a Novel Prognostic Marker of Breast Cancer Patient Survival, Limits Cancer Cell Migration and Slows Metastatic Progression by Regulating Microtubule Dynamics. Cancer Research, 2013, 73, 2905-2915.     | 0.4  | 56        |
| 112 | Coming into Focus: Mechanisms of Microtubule Minus-End Organization. Trends in Cell Biology, 2018, 28, 574-588.                                                                                                 | 3.6  | 56        |
| 113 | KIF13B establishes a CAV1-enriched microdomain at the ciliary transition zone to promote Sonic hedgehog signalling. Nature Communications, 2017, 8, 14177.                                                      | 5.8  | 55        |
| 114 | Aurora B spatially regulates EB3 phosphorylation to coordinate daughter cell adhesion with cytokinesis. Journal of Cell Biology, 2013, 201, 709-724.                                                            | 2.3  | 54        |
| 115 | Feedback-Driven Assembly of the Axon Initial Segment. Neuron, 2019, 104, 305-321.e8.                                                                                                                            | 3.8  | 54        |
| 116 | Publishing in the time of COVID-19. ELife, 2020, 9, .                                                                                                                                                           | 2.8  | 54        |
| 117 | Mechanisms of microtubule organization in differentiated animal cells. Nature Reviews Molecular Cell Biology, 2022, 23, 541-558.                                                                                | 16.1 | 54        |
| 118 | Mammalian CLASPs are required for mitotic spindle organization and kinetochore alignment. Genes To Cells, 2006, 11, 845-857.                                                                                    | 0.5  | 52        |
| 119 | Microtubule-targeting-dependent reorganization of filopodia. Journal of Cell Science, 2007, 120, 1235-1244.                                                                                                     | 1.2  | 52        |
| 120 | <scp>SCARECROW</scp> â€ <scp>LIKE</scp> 23 and <scp>SCARECROW</scp> jointly specify endodermal cell fate but distinctly control <scp>SHORT</scp> â€ <scp>ROOT</scp> movement. Plant Journal, 2015, 84, 773-784. | 2.8  | 52        |
| 121 | Photoswitchable paclitaxel-based microtubule stabilisers allow optical control over the microtubule cytoskeleton. Nature Communications, 2020, 11, 4640.                                                        | 5.8  | 52        |
| 122 | Kinesin-4 KIF21B is a potent microtubule pausing factor. ELife, 2017, 6, .                                                                                                                                      | 2.8  | 51        |
| 123 | CLASP Mediates Microtubule Repair by Restricting Lattice Damage and Regulating Tubulin Incorporation. Current Biology, 2020, 30, 2175-2183.e6.                                                                  | 1.8  | 50        |
| 124 | The intracellular redox protein MICAL-1 regulates the development of hippocampal mossy fibre connections. Nature Communications, 2014, 5, 4317.                                                                 | 5.8  | 49        |
| 125 | Molecular Insights into Mammalian End-binding Protein Heterodimerization. Journal of Biological Chemistry, 2010, 285, 5802-5814.                                                                                | 1.6  | 48        |
| 126 | Differential expression of liprinâ€Î± family proteins in the brain suggests functional diversification. Journal of Comparative Neurology, 2011, 519, 3040-3060.                                                 | 0.9  | 47        |

| #   | Article                                                                                                                                                                                          | IF   | Citations |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Structural Basis of Formation of the Microtubule Minus-End-Regulating CAMSAP-Katanin Complex. Structure, 2018, 26, 375-382.e4.                                                                   | 1.6  | 47        |
| 128 | Concerted action of kinesins KIF5B and KIF13B promotes efficient secretory vesicle transport to microtubule plus ends. ELife, 2020, 9, .                                                         | 2.8  | 46        |
| 129 | Cytolinker Gas2L1 regulates axon morphology through microtubuleâ€modulated actin stabilization. EMBO Reports, 2019, 20, e47732.                                                                  | 2.0  | 45        |
| 130 | Cytosolic enzymes with a mitochondrial ancestry from the anaerobic chytrid Piromyces sp. E2. Molecular Microbiology, 1998, 30, 1017-1027.                                                        | 1.2  | 44        |
| 131 | Sequence Determinants of a Microtubule Tip Localization Signal (MtLS). Journal of Biological Chemistry, 2012, 287, 28227-28242.                                                                  | 1.6  | 44        |
| 132 | Microtubule Plus-End Tracking Proteins SLAIN1/2 and ch-TOG Promote Axonal Development. Journal of Neuroscience, 2012, 32, 14722-14728a.                                                          | 1.7  | 44        |
| 133 | A role for Bicaudal-D2 in radial cerebellar granule cell migration. Nature Communications, 2014, 5, 3411.                                                                                        | 5.8  | 44        |
| 134 | Taxanes convert regions of perturbed microtubule growth into rescue sites. Nature Materials, 2020, 19, 355-365.                                                                                  | 13.3 | 44        |
| 135 | A Robust, GFP-Orthogonal Photoswitchable Inhibitor Scaffold Extends Optical Control over the Microtubule Cytoskeleton. Cell Chemical Biology, 2021, 28, 228-241.e6.                              | 2.5  | 43        |
| 136 | MKLP2 Is a Motile Kinesin that Transports the Chromosomal Passenger Complex during Anaphase. Current Biology, 2020, 30, 2628-2637.e9.                                                            | 1.8  | 42        |
| 137 | Epothilone B inhibits migration of glioblastoma cells by inducing microtubule catastrophes and affecting EB1 accumulation at microtubule plus ends. Biochemical Pharmacology, 2012, 84, 432-443. | 2.0  | 41        |
| 138 | Phosphorylation Controls Autoinhibition of Cytoplasmic Linker Protein-170. Molecular Biology of the Cell, 2010, 21, 2661-2673.                                                                   | 0.9  | 40        |
| 139 | Campylobacter jejuni Translocation across Intestinal Epithelial Cells Is Facilitated by Ganglioside-Like Lipooligosaccharide Structures. Infection and Immunity, 2012, 80, 3307-3318.            | 1.0  | 39        |
| 140 | Two populations of cytoplasmic dynein contribute to spindle positioning in <i>C. elegans</i> embryos. Journal of Cell Biology, 2017, 216, 2777-2793.                                             | 2.3  | 39        |
| 141 | Short Linear Sequence Motif LxxPTPh Targets Diverse Proteins to Growing Microtubule Ends. Structure, 2017, 25, 924-932.e4.                                                                       | 1.6  | 37        |
| 142 | Tipping microtubule dynamics, one protofilament at a time. Current Opinion in Cell Biology, 2018, 50, 86-93.                                                                                     | 2.6  | 37        |
| 143 | The localization of histone H3.3 in germ line chromatin of Drosophila males as established with a histone H3.3-specific antiserum. Chromosoma, 1997, 106, 335-347.                               | 1.0  | 36        |
| 144 | Structural determinants of microtubule minus end preference in CAMSAP CKK domains. Nature Communications, 2019, 10, 5236.                                                                        | 5.8  | 36        |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Microtubules and cadherins: a neglected partnership. Frontiers in Bioscience - Landmark, 2009, Volume, 3159.                                                                                                                              | 3.0 | 35        |
| 146 | MAP7D2 Localizes to the Proximal Axon and Locally Promotes Kinesin-1-Mediated Cargo Transport into the Axon. Cell Reports, 2019, 26, 1988-1999.e6.                                                                                        | 2.9 | 35        |
| 147 | Identification and characterization of the Drosophila histone H4 replacement gene. FEBS Letters, 1996, 388, 219-222.                                                                                                                      | 1.3 | 34        |
| 148 | A serpin in the cellulosome of the anaerobic fungus Piromyces sp. strain E2. Mycological Research, 2008, 112, 999-1006.                                                                                                                   | 2.5 | 34        |
| 149 | Regulation of localization and activity of the microtubule depolymerase MCAK. Bioarchitecture, 2011, 1, 80-87.                                                                                                                            | 1.5 | 34        |
| 150 | Force-Dependent Regulation of Talin–KANK1 Complex at Focal Adhesions. Nano Letters, 2019, 19, 5982-5990.                                                                                                                                  | 4.5 | 34        |
| 151 | A CEP104-CSPP1 Complex Is Required for Formation of Primary Cilia Competent in Hedgehog Signaling.<br>Cell Reports, 2019, 28, 1907-1922.e6.                                                                                               | 2.9 | 34        |
| 152 | Pyrrole Hemithioindigo Antimitotics with Nearâ€Quantitative Bidirectional Photoswitching that Photocontrol Cellular Microtubule Dynamics with Singleâ€Cell Precision**. Angewandte Chemie - International Edition, 2021, 60, 23695-23704. | 7.2 | 34        |
| 153 | Microtubule Dynamics Analysis Using Kymographs and Variable-Rate Particle Filters. IEEE Transactions on Image Processing, 2010, 19, 1861-1876.                                                                                            | 6.0 | 33        |
| 154 | CLASP2 interacts with p120-catenin and governs microtubule dynamics at adherens junctions. Journal of Cell Biology, 2013, 203, 1043-1061.                                                                                                 | 2.3 | 33        |
| 155 | Dendritic Spine Plasticity: New Regulatory Roles of Dynamic Microtubules. Neuroscientist, 2010, 16, 650-661.                                                                                                                              | 2.6 | 32        |
| 156 | End Binding Proteins Are Obligatory Dimers. PLoS ONE, 2013, 8, e74448.                                                                                                                                                                    | 1.1 | 32        |
| 157 | Biophysical and Structural Characterization of the Centriolar Protein Cep104 Interaction Network.<br>Journal of Biological Chemistry, 2016, 291, 18496-18504.                                                                             | 1.6 | 31        |
| 158 | GAS2L1 Is a Centriole-Associated Protein Required for Centrosome Dynamics and Disjunction. Developmental Cell, 2017, 40, 81-94.                                                                                                           | 3.1 | 31        |
| 159 | Systematic identification of recognition motifs for the hub protein LC8. Life Science Alliance, 2019, 2, e201900366.                                                                                                                      | 1.3 | 31        |
| 160 | Mechanisms of Motor-Independent Membrane Remodeling Driven by Dynamic Microtubules. Current Biology, 2020, 30, 972-987.e12.                                                                                                               | 1.8 | 30        |
| 161 | A drug discovery platform to identify compounds that inhibit EGFR triple mutants. Nature Chemical Biology, 2020, 16, 577-586.                                                                                                             | 3.9 | 30        |
| 162 | Kinesin-4 KIF21B limits microtubule growth to allow rapid centrosome polarization in T cells. ELife, 2020, $9$ , .                                                                                                                        | 2.8 | 29        |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Structural basis for misregulation of kinesin KIF21A autoinhibition by CFEOM1 disease mutations. Scientific Reports, 2016, 6, 30668.                                                                                                          | 1.6 | 26        |
| 164 | MICAL3 Flavoprotein Monooxygenase Forms a Complex with Centralspindlin and Regulates Cytokinesis. Journal of Biological Chemistry, 2016, 291, 20617-20629.                                                                                    | 1.6 | 25        |
| 165 | Plocabulin, a novel tubulin-binding agent, inhibits angiogenesis by modulation of microtubule dynamics in endothelial cells. BMC Cancer, 2018, 18, 164.                                                                                       | 1.1 | 25        |
| 166 | Implementing a "publish, then review" model of publishing. ELife, 2020, 9, .                                                                                                                                                                  | 2.8 | 25        |
| 167 | Cel6A, a major exoglucanase from the cellulosome of the anaerobic fungi Piromyces sp. E2 and Piromyces equi. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2003, 1628, 30-39.                                                     | 2.4 | 24        |
| 168 | In Vitro Reconstitution of Dynamic Microtubules Interacting with Actin Filament Networks. Methods in Enzymology, 2014, 540, 301-320.                                                                                                          | 0.4 | 24        |
| 169 | Mechanical and Geometrical Constraints Control Kinesin-Based Microtubule Guidance. Current Biology, 2014, 24, 322-328.                                                                                                                        | 1.8 | 24        |
| 170 | Structural basis of katanin p60:p80 complex formation. Scientific Reports, 2017, 7, 14893.                                                                                                                                                    | 1.6 | 24        |
| 171 | <i>In Vivo</i> Photocontrol of Microtubule Dynamics and Integrity, Migration and Mitosis, by the Potent GFP-Imaging-Compatible Photoswitchable Reagents SBTubA4P and SBTub2M. Journal of the American Chemical Society, 2022, 144, 5614-5628. | 6.6 | 24        |
| 172 | Lattice defects induced by microtubule-stabilizing agents exert a long-range effect on microtubule growth by promoting catastrophes. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,$ .           | 3.3 | 24        |
| 173 | Guided by Light: Optical Control of Microtubule Gliding Assays. Nano Letters, 2018, 18, 7524-7528.                                                                                                                                            | 4.5 | 23        |
| 174 | Pharmaceutical-Grade Rigosertib Is a Microtubule-Destabilizing Agent. Molecular Cell, 2020, 79, 191-198.e3.                                                                                                                                   | 4.5 | 22        |
| 175 | Deep-learning method for data association in particle tracking. Bioinformatics, 2020, 36, 4935-4941.                                                                                                                                          | 1.8 | 22        |
| 176 | Direct observation of dynamic protein interactions involving human microtubules using solid-state NMR spectroscopy. Nature Communications, 2020, 11, 18.                                                                                      | 5.8 | 20        |
| 177 | Cross-linkers at growing microtubule ends generate forces that drive actin transport. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112799119.                                                | 3.3 | 20        |
| 178 | Genomic DNA analysis of genes encoding (hemi-)cellulolytic enzymes of the anaerobic fungus Piromyces sp. E2. Gene, 2003, 314, 73-80.                                                                                                          | 1.0 | 19        |
| 179 | Microtubule End Binding: EBs Sense the Guanine Nucleotide State. Current Biology, 2011, 21, R283-R285.                                                                                                                                        | 1.8 | 19        |
| 180 | Two Types of Polyadenated mRNAs are Synthesized from Drosophila Replication-Dependent Histone Genes. FEBS Journal, 1997, 244, 294-300.                                                                                                        | 0.2 | 18        |

| #   | Article                                                                                                                                                                                                               | IF   | Citations |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Dynein at the nuclear envelope. EMBO Reports, 2010, 11, 649-649.                                                                                                                                                      | 2.0  | 17        |
| 182 | Microtubule Dynamics at the Cell Cortex Probed by TIRF Microscopy. Methods in Cell Biology, 2010, 97, 91-109.                                                                                                         | 0.5  | 17        |
| 183 | Facilitating identification of minimal protein binding domains by cross-linking mass spectrometry. Scientific Reports, 2017, 7, 13453.                                                                                | 1.6  | 17        |
| 184 | Interspecific sequence comparison of the muscle-myosin heavy-chain genes from Drosophila hydei and Drosophila melanogaster. Journal of Molecular Evolution, 1994, 39, 357-368.                                        | 0.8  | 16        |
| 185 | Multisite Phosphorylation of NuMA-Related LIN-5 Controls Mitotic Spindle Positioning in C. elegans. PLoS Genetics, 2016, 12, e1006291.                                                                                | 1.5  | 16        |
| 186 | Cytotoxic <scp>T</scp> lymphocyte effector function is independent of nucleus–centrosome dissociation. European Journal of Immunology, 2012, 42, 2132-2141.                                                           | 1.6  | 15        |
| 187 | Centrobin regulates centrosome function in interphase cells by limiting pericentriolar matrix recruitment. Cell Cycle, 2013, 12, 899-906.                                                                             | 1.3  | 15        |
| 188 | Kif7 keeps cilia tips in shape. Nature Cell Biology, 2014, 16, 623-625.                                                                                                                                               | 4.6  | 15        |
| 189 | Photoswitchable Epothiloneâ€Based Microtubule Stabilisers Allow GFPâ€Imagingâ€Compatible, Optical Control over the Microtubule Cytoskeleton**. Angewandte Chemie - International Edition, 2022, 61, .                 | 7.2  | 15        |
| 190 | F-actin asymmetry and the endoplasmic reticulum–associated TCC-1 protein contribute to stereotypic spindle movements in the <i>Caenorhabditis elegans</i> embryo. Molecular Biology of the Cell, 2013, 24, 2201-2215. | 0.9  | 14        |
| 191 | BBLN-1 is essential for intermediate filament organization and apical membrane morphology. Current Biology, 2021, 31, 2334-2346.e9.                                                                                   | 1.8  | 13        |
| 192 | Stimulation of the CLIP-170–dependent capture of membrane organelles by microtubules through fine tuning of microtubule assembly dynamics. Molecular Biology of the Cell, 2011, 22, 4029-4037.                        | 0.9  | 12        |
| 193 | Closing the tubulin detyrosination cycle. Science, 2017, 358, 1381-1382.                                                                                                                                              | 6.0  | 12        |
| 194 | Dynein self-organizes while translocating the centrosome in T-cells. Molecular Biology of the Cell, 2021, 32, 855-868.                                                                                                | 0.9  | 12        |
| 195 | WDR47 protects neuronal microtubule minus ends from katanin-mediated severing. Cell Reports, 2021, 36, 109371.                                                                                                        | 2.9  | 12        |
| 196 | Organizing Junctions at the Cell-Cell Interface. Cell, 2008, 135, 791-793.                                                                                                                                            | 13.5 | 11        |
| 197 | Crystal Structure of a Heterotetrameric Katanin p60:p80 Complex. Structure, 2019, 27, 1375-1383.e3.                                                                                                                   | 1.6  | 11        |
| 198 | Organization and dynamics of the cortical complexes controlling insulin secretion in $\hat{l}^2$ -cells. Journal of Cell Science, 2022, 135, .                                                                        | 1.2  | 11        |

| #   | Article                                                                                                                                                                                                      | IF   | Citations |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Minor-myosin, a novel myosin isoform synthesized preferentially in Drosophila testis is encoded by the muscle myosin heavy chain gene. Mechanisms of Development, 1995, 51, 67-81.                           | 1.7  | 10        |
| 200 | Naturally occurring testis-specific histone H3 antisense transcripts in Drosophila. Molecular Reproduction and Development, 1997, 48, 413-420.                                                               | 1.0  | 10        |
| 201 | Bi-directional transport of the nucleus by dynein and kinesin-1. Communicative and Integrative Biology, 2011, 4, 21-25.                                                                                      | 0.6  | 10        |
| 202 | Talin rod domain–containing protein 1 (TLNRD1) is a novel actin-bundling protein which promotes filopodia formation. Journal of Cell Biology, 2021, 220, .                                                   | 2.3  | 9         |
| 203 | Accurate estimation of microtubule dynamics using kymographs and variable-rate particle filters. , 2009, 2009, 1012-5.                                                                                       |      | 8         |
| 204 | Analysis of Microtubule Plus-End-Tracking Proteins in Cilia. Methods in Enzymology, 2013, 524, 105-122.                                                                                                      | 0.4  | 8         |
| 205 | Automated Analysis of Intracellular Dynamic Processes. Methods in Molecular Biology, 2017, 1563, 209-228.                                                                                                    | 0.4  | 8         |
| 206 | RADHA - a new male germ line-specific chromosomal protein of Drosophila. Chromosoma, 1999, 108, 235-242.                                                                                                     | 1.0  | 7         |
| 207 | Thirteen Is the Lucky Number for Doublecortin. Developmental Cell, 2004, 7, 5-6.                                                                                                                             | 3.1  | 7         |
| 208 | Kinesins Lead Aging Microtubules to Catastrophe. Cell, 2011, 147, 966-968.                                                                                                                                   | 13.5 | 7         |
| 209 | Two Antagonistic Microtubule Targeting Drugs Act Synergistically to Kill Cancer Cells. Cancers, 2020, 12, 2196.                                                                                              | 1.7  | 7         |
| 210 | Bi-directional transport of the nucleus by dynein and kinesin-1. Communicative and Integrative Biology, 2011, 4, 21-5.                                                                                       | 0.6  | 7         |
| 211 | Self-assembly of pericentriolar material in interphase cells lacking centrioles. ELife, 0, $11$ , .                                                                                                          | 2.8  | 7         |
| 212 | Drosophila melanogaster histone H2B retropseudogene is inserted into a region rich in transposable elements. Genome, 1998, 41, 396-401.                                                                      | 0.9  | 6         |
| 213 | More is not always better: hyperglutamylation leads to neurodegeneration. EMBO Journal, 2018, 37, .                                                                                                          | 3.5  | 6         |
| 214 | Pyrrole Hemithioindigo Antimitotics with Nearâ€Quantitative Bidirectional Photoswitching that Photocontrol Cellular Microtubule Dynamics with Singleâ€Cell Precision**. Angewandte Chemie, 2021, 133, 23888. | 1.6  | 6         |
| 215 | Angiomotin isoform 2 promotes binding of PALS1 to KIF13B at primary cilia and regulates ciliary length and signaling. Journal of Cell Science, 2022, 135, .                                                  | 1.2  | 6         |
| 216 | Regulation of the expression of histone H3.3 by differential polyadenylation. Genome, 2005, 48, 503-510.                                                                                                     | 0.9  | 4         |

| #   | Article                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Tipping the spindle into the right position. Journal of Cell Biology, 2016, 213, 293-295.                                                                                | 2.3 | 4         |
| 218 | Isolation of Novel +TIPs and Their Binding Partners Using Affinity Purification Techniques. Methods in Molecular Biology, 2011, 777, 293-316.                            | 0.4 | 4         |
| 219 | Strengthening Microtubules by Cuts that Heal. Developmental Cell, 2018, 47, 400-401.                                                                                     | 3.1 | 3         |
| 220 | Solid-State NMR Spectroscopy for Studying Microtubules and Microtubule-Associated Proteins. Methods in Molecular Biology, 2021, 2305, 193-201.                           | 0.4 | 3         |
| 221 | Microtubules keep large cells in shape. Journal of Cell Biology, 2020, 219, .                                                                                            | 2.3 | 3         |
| 222 | Rigorous review and editorial oversight of clinical preprints. ELife, 2021, 10, .                                                                                        | 2.8 | 2         |
| 223 | Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling.<br>Journal of Experimental Medicine, 2012, 209, i3-i3.                 | 4.2 | 1         |
| 224 | Anna Akhmanova: Great tips on microtubules. Journal of Cell Biology, 2011, 195, 168-169.                                                                                 | 2.3 | 0         |
| 225 | Photoswitchable Epothiloneâ€Based Microtubule Stabilisers Allow GFPâ€Imagingâ€Compatible, Optical Control over the Microtubule Cytoskeleton**. Angewandte Chemie, 0, , . | 1.6 | O         |