John C Crittenden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6725548/publications.pdf

Version: 2024-02-01

372 papers

24,334 citations

85 h-index 130 g-index

375 all docs

375 docs citations

times ranked

375

24682 citing authors

#	Article	IF	CITATIONS
1	MWH's Water Treatment. , 2012, , .		575
2	Stability of commercial metal oxide nanoparticles in water. Water Research, 2008, 42, 2204-2212.	5.3	519
3	Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Research, 2009, 43, 4249-4257.	5.3	508
4	The Technology Horizon for Photocatalytic Water Treatment: Sunrise or Sunset?. Environmental Science &	4.6	493
5	A kinetic model for H2O2/UV process in a completely mixed batch reactor. Water Research, 1999, 33, 2315-2328.	5.3	431
6	Surface chemistry of active carbon: Specific adsorption of phenols. Journal of Colloid and Interface Science, 1969, 31, 116-130.	5.0	420
7	Sustainability Science and Engineering:Â The Emergence of a New Metadiscipline. Environmental Science & Emp; Technology, 2003, 37, 5314-5324.	4.6	355
8	A Critical Review on Energy Conversion and Environmental Remediation of Photocatalysts with Remodeling Crystal Lattice, Surface, and Interface. ACS Nano, 2019, 13, 9811-9840.	7.3	331
9	Perfluorooctanoic Acid Degradation Using UV–Persulfate Process: Modeling of the Degradation and Chlorate Formation. Environmental Science & Environ	4.6	294
10	Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents. Water Research, 2018, 131, 246-254.	5.3	291
11	Preparation of a Novel TiO2-Based pâ^'n Junction Nanotube Photocatalyst. Environmental Science & Environmental Science & Technology, 2005, 39, 1201-1208.	4.6	283
12	Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue. Chemical Engineering Journal, 2018, 335, 110-119.	6.6	262
13	Removal of Antimonite (Sb(III)) and Antimonate (Sb(V)) from Aqueous Solution Using Carbon Nanofibers That Are Decorated with Zirconium Oxide (ZrO ₂). Environmental Science & amp; Technology, 2015, 49, 11115-11124.	4.6	233
14	Potential and implemented membrane-based technologies for the treatment and reuse of flowback and produced water from shale gas and oil plays: A review. Desalination, 2019, 455, 34-57.	4.0	233
15	Structural Changes of \hat{I}^3 -Al ₂ O ₃ -Supported Catalysts in Hot Liquid Water. ACS Catalysis, 2011, 1, 552-561.	5.5	232
16	Transport of Organic Compounds With Saturated Groundwater Flow: Model Development and Parameter Sensitivity. Water Resources Research, 1986, 22, 271-284.	1.7	228
17	Selfâ€Optimization of the Active Site of Molybdenum Disulfide by an Irreversible Phase Transition during Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2017, 56, 7610-7614.	7.2	221
18	Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact. Applied Catalysis B: Environmental, 2017, 203, 515-525.	10.8	212

#	Article	IF	CITATIONS
19	Development of a Group Contribution Method To Predict Aqueous Phase Hydroxyl Radical (HO•) Reaction Rate Constants. Environmental Science & Environ	4.6	211
20	Reinventing Fenton Chemistry: Iron Oxychloride Nanosheet for pH-Insensitive H ₂ O ₂ Activation. Environmental Science and Technology Letters, 2018, 5, 186-191.	3.9	202
21	Oxidation of organics in retentates from reverse osmosis wastewater reuse facilities. Water Research, 2009, 43, 3992-3998.	5.3	197
22	Prediction of multicomponent adsorption equilibria using ideal adsorbed solution theory. Environmental Science & Environmental	4.6	193
23	Ball-Milled Carbon Nanomaterials for Energy and Environmental Applications. ACS Sustainable Chemistry and Engineering, 2017, 5, 9568-9585.	3.2	187
24	Predicting GAC Performance With Rapid Smallâ€Scale Column Tests. Journal - American Water Works Association, 1991, 83, 77-87.	0.2	183
25	Deactivation and regeneration of a commercial SCR catalyst: Comparison with alkali metals and arsenic. Applied Catalysis B: Environmental, 2015, 168-169, 195-202.	10.8	180
26	Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biology and Toxicology, 2010, 26, 225-238.	2.4	178
27	Impact of Chloride Ions on UV/H ₂ O ₂ and UV/Persulfate Advanced Oxidation Processes. Environmental Science & Environmental Science	4.6	178
28	Photocatalytic wastewater purification with simultaneous hydrogen production using MoS 2 QD-decorated hierarchical assembly of ZnIn 2 S 4 on reduced graphene oxide photocatalyst. Water Research, 2017, 121, 11-19.	5.3	176
29	pH Dependence of Arsenic Oxidation by Rice-Husk-Derived Biochar: Roles of Redox-Active Moieties. Environmental Science & Environmental Science & Envir	4.6	175
30	Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA. Science of the Total Environment, 2018, 622-623, 974-987.	3.9	171
31	Correlation of Aqueous-Phase Adsorption Isotherms. Environmental Science & Emp; Technology, 1999, 33, 2926-2933.	4.6	170
32	Fixed-bed photocatalysts for solar decontamination of water. Environmental Science & Emp; Technology, 1994, 28, 435-442.	4.6	169
33	Mechanistic insights into adsorption and reduction of hexavalent chromium from water using magnetic biochar composite: Key roles of Fe3O4 and persistent free radicals. Environmental Pollution, 2018, 243, 1302-1309.	3.7	162
34	Photocatalytic oxidation of chlorinated hydrocarbons in water. Water Research, 1997, 31, 429-438.	5.3	154
35	Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework. Applied Catalysis B: Environmental, 2019, 251, 66-75.	10.8	154
36	Electrochemical oxidation and advanced oxidation processes using a 3D hexagonal Co3O4 array anode for 4-nitrophenol decomposition coupled with simultaneous CO2 conversion to liquid fuels via a flower-like CuO cathode. Water Research, 2019, 150, 330-339.	5.3	147

#	Article	IF	Citations
37	Low-cost antifouling PVC ultrafiltration membrane fabrication with Pluronic F 127: Effect of additives on properties and performance. Desalination, 2012, 307, 26-33.	4.0	145
38	CO2 emissions embodied in China's exports from 2002 to 2008: A structural decomposition analysis. Energy Policy, 2011, 39, 7381-7388.	4.2	140
39	Accelerating Fe($\hat{a}\hat{c}$)/Fe($\hat{a}\hat{c}$) cycle via Fe($\hat{a}\hat{c}$) substitution for enhancing Fenton-like performance of Fe-MOFs. Applied Catalysis B: Environmental, 2021, 286, 119859.	10.8	138
40	Recovery of Lithium from Wastewater Using Development of Li Ion-Imprinted Polymers. ACS Sustainable Chemistry and Engineering, 2015, 3, 460-467.	3.2	133
41	Electrochemical degradation of methylisothiazolinone by using Ti/SnO2-Sb2O3/ \hat{l} ±, \hat{l} 2-PbO2 electrode: Kinetics, energy efficiency, oxidation mechanism and degradation pathway. Chemical Engineering Journal, 2019, 374, 626-636.	6.6	133
42	Enhanced Accumulation of Arsenate in Carp in the Presence of Titanium Dioxide Nanoparticles. Water, Air, and Soil Pollution, 2007, 178, 245-254.	1.1	132
43	Groundwater remediation from the past to the future: A bibliometric analysis. Water Research, 2017, 119, 114-125.	5.3	131
44	3D hierarchical porous-structured biochar aerogel for rapid and efficient phenicol antibiotics removal from water. Chemical Engineering Journal, 2019, 368, 639-648.	6.6	124
45	Arsenate Removal by Nanostructured ZrO ₂ Spheres. Environmental Science & Environmental Scien	4.6	123
46	Attachment Efficiency of Nanoparticle Aggregation in Aqueous Dispersions: Modeling and Experimental Validation. Environmental Science & Experimental Validation. Environmental Science & Experimental Validation.	4.6	121
47	Surface modification of UF membranes with functionalized MWCNTs to control membrane fouling by NOM fractions. Journal of Membrane Science, 2015, 492, 400-411.	4.1	121
48	Tuning Pb(II) Adsorption from Aqueous Solutions on Ultrathin Iron Oxychloride (FeOCl) Nanosheets. Environmental Science & Envi	4.6	121
49	Comparison of MoO3 and WO3 on arsenic poisoning V2O5/TiO2 catalyst: DRIFTS and DFT study. Applied Catalysis B: Environmental, 2016, 181, 692-698.	10.8	117
50	Multipollutant Control (MPC) of Flue Gas from Stationary Sources Using SCR Technology: A Critical Review. Environmental Science & Environmental Scienc	4.6	117
51	Fouling characteristics of reverse osmosis membranes at different positions of a full-scale plant for municipal wastewater reclamation. Water Research, 2016, 90, 329-336.	5.3	114
52	Oxidation of Microcystin-LR via Activation of Peroxymonosulfate Using Ascorbic Acid: Kinetic Modeling and Toxicity Assessment. Environmental Science & Environmental Science & 2018, 52, 4305-4312.	4.6	114
53	Photocatalytic degradation of 2,4-dichlorophenol using nanoscale Fe/TiO2. Chemical Engineering Journal, 2012, 181-182, 189-195.	6.6	113
54	Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys. Applied Catalysis B: Environmental, 2022, 310, 121346.	10.8	113

#	Article	IF	CITATIONS
55	Userâ€Oriented Batch Reactor Solutions to the Homogeneous Surface Diffusion Model. Journal of Environmental Engineering, ASCE, 1983, 109, 82-101.	0.7	112
56	Kinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UV/H ₂ O ₂ . Environmental Science &	4.6	111
57	Facile synthesis of Agl/BiOI-Bi2O3 multi-heterojunctions with high visible light activity for Cr(VI) reduction. Journal of Hazardous Materials, 2016, 317, 8-16.	6.5	111
58	Sea-urchin-structure g-C3N4 with narrow bandgap (˜2.0 eV) for efficient overall water splitting under visible light irradiation. Applied Catalysis B: Environmental, 2019, 249, 275-281.	10.8	110
59	Toward the Next Generation of Sustainable Membranes from Green Chemistry Principles. ACS Sustainable Chemistry and Engineering, 2021, 9, 50-75.	3.2	110
60	Surface Tuning of La _{0.5} Sr _{0.5} CoO ₃ Perovskite Catalysts by Acetic Acid for NO _{<i>x</i>} Storage and Reduction. Environmental Science &	4.6	108
61	Investigation of the Poisoning Mechanism of Lead on the CeO ₂ —WO ₃ Catalyst for the NH ₃ –SCR Reaction via in Situ IR and Raman Spectroscopy Measurement. Environmental Science & Environmen	4.6	106
62	Arsenic adsorption on \hat{l} ±-MnO2 nanofibers and the significance of (1 0 0) facet as compared with (1 1 0). Chemical Engineering Journal, 2018, 331, 492-500.	6.6	106
63	Pb(<scp>ii</scp>), Cu(<scp>ii</scp>) and Cd(<scp>ii</scp>) removal using a humic substance-based double network hydrogel in individual and multicomponent systems. Journal of Materials Chemistry A, 2018, 6, 20110-20120.	5.2	106
64	Critical Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Mechanism Identification and Engineering Design. Environmental Science & Eamp; Technology, 2021, 55, 4287-4304.	4.6	106
65	A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. Environmental Science & Environme	4.6	105
66	The role of reactive oxygen species and carbonate radical in oxcarbazepine degradation via UV, UV/H2O2: Kinetics, mechanisms and toxicity evaluation. Water Research, 2018, 147, 204-213.	5.3	103
67	Stability and Removal of Water Soluble CdTe Quantum Dots in Water. Environmental Science & Emp; Technology, 2008, 42, 321-325.	4.6	102
68	Capturing Lithium from Wastewater Using a Fixed Bed Packed with 3-D MnO ₂ Ion Cages. Environmental Science & Environ	4.6	102
69	Responses of the Microalga <i>Chlorophyta</i> sp. to Bacterial Quorum Sensing Molecules (<i>N</i> -Acylhomoserine Lactones): Aromatic Protein-Induced Self-Aggregation. Environmental Science & Environ	4.6	102
70	Unique applications and improvements of reverse electrodialysis: A review and outlook. Applied Energy, 2020, 262, 114482.	5.1	101
71	Chemical poison and regeneration of SCR catalysts for NO x removal from stationary sources. Frontiers of Environmental Science and Engineering, 2016, 10, 413-427.	3.3	100
72	Degradation of thiacloprid via unactivated peroxymonosulfate: The overlooked singlet oxygen oxidation. Chemical Engineering Journal, 2020, 388, 124264.	6.6	100

#	Article	IF	CITATIONS
73	Predictive Model for Design of Fixed-Bed Adsorbers: Parameter Estimation and Model Development. American Society of Civil Engineers, Journal of the Environmental Engineering Division, 1978, 104, 185-197.	0.3	100
74	Heterogeneous photocatalytic oxidation of hazardous organic contaminants in water. Water Environment Research, 1993, 65, 665-673.	1.3	99
75	Promoting effect of nitration modification on activated carbon in the catalytic ozonation of oxalic acid. Applied Catalysis B: Environmental, 2014, 146, 169-176.	10.8	99
76	Fabrication of the flower-flake-like CuBi2O4/Bi2WO6 heterostructure as efficient visible-light driven photocatalysts: Performance, kinetics and mechanism insight. Applied Surface Science, 2019, 495, 143521.	3.1	99
77	Integration of a Photo-Fenton Reaction and a Membrane Filtration using CS/PAN@FeOOH/g-C3N4Electrospun Nanofibers: Synthesis, Characterization, Self-cleaning Performance and Mechanism. Applied Catalysis B: Environmental, 2021, 281, 119519.	10.8	99
78	Design of Rapid Fixedâ€Bed Adsorption Tests for Nonconstant Diffusivities. Journal of Environmental Engineering, ASCE, 1987, 113, 243-259.	0.7	97
79	Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting. ACS Nano, 2021, 15, 5838-5860.	7.3	97
80	Simplified Models for Design of Fixedâ€Bed Adsorption Systems. Journal of Environmental Engineering, ASCE, 1984, 110, 440-456.	0.7	93
81	Degradation of dyes by peroxymonosulfate activated by ternary CoFeNi-layered double hydroxide: Catalytic performance, mechanism and kinetic modeling. Journal of Colloid and Interface Science, 2018, 515, 92-100.	5.0	92
82	Highly Efficient and Selective Hg(II) Removal from Water Using Multilayered Ti ₃ C ₂ O <i>_x</i> MXene via Adsorption Coupled with Catalytic Reduction Mechanism. Environmental Science & Environme	4.6	92
83	Highly enhanced photocatalytic reduction of Cr(VI) on AgI/TiO2 under visible light irradiation: Influence of calcination temperature. Journal of Hazardous Materials, 2016, 307, 213-220.	6.5	90
84	Impacts of Pb and SO ₂ Poisoning on CeO ₂ â€"WO ₃ /TiO ₂ â€"SiO ₂ SCR Catalyst. Environmental Science & Technology, 2017, 51, 11943-11949.	4.6	90
85	Stability of Pt/l³-Al2O3 Catalysts in Model Biomass Solutions. Topics in Catalysis, 2012, 55, 162-174.	1.3	89
86	Analyzing spatio-temporal changes and trade-offs to support the supply of multiple ecosystem services in Beijing, China. Ecological Indicators, 2018, 94, 117-129.	2.6	89
87	Efficient degradation of lomefloxacin by Co-Cu-LDH activating peroxymonosulfate process: Optimization, dynamics, degradation pathway and mechanism. Journal of Hazardous Materials, 2020, 399, 122966.	6.5	89
88	Remediation of Petroleum-Contaminated Soil and Simultaneous Recovery of Oil by Fast Pyrolysis. Environmental Science & Environ	4.6	87
89	Trichloroethene Degradation by UV/H2O2Advanced Oxidation Process:Â Product Study and Kinetic Modeling. Environmental Science & Technology, 2007, 41, 1696-1703.	4.6	86
90	Solar detoxification of fuel-contaminated groundwater using fixed-bed photocatalysts. Water Environment Research, 1996, 68, 270-278.	1.3	85

#	Article	IF	CITATIONS
91	Antimony Removal from Aqueous Solution Using Novel $\hat{l}\pm$ -MnO ₂ Nanofibers: Equilibrium, Kinetic, and Density Functional Theory Studies. ACS Sustainable Chemistry and Engineering, 2017, 5, 2255-2264.	3.2	85
92	A bibliometric analysis of industrial wastewater treatments from 1998 to 2019. Environmental Pollution, 2021, 275, 115785.	3.7	84
93	Zirconia (ZrO ₂) Embedded in Carbon Nanowires via Electrospinning for Efficient Arsenic Removal from Water Combined with DFT Studies. ACS Applied Materials & Samp; Interfaces, 2016, 8, 18912-18921.	4.0	83
94	High performance ultrafiltration membrane composed of PVDF blended with its derivative copolymer PVDF-g-PEGMA. Journal of Membrane Science, 2013, 445, 66-75.	4.1	82
95	Phase-Mediated Heavy Metal Adsorption from Aqueous Solutions Using Two-Dimensional Layered MoS ₂ . ACS Applied Materials & Interfaces, 2019, 11, 38789-38797.	4.0	82
96	Remediation of nitrate contamination by membrane hydrogenotrophic denitrifying biofilm integrated in microbial electrolysis cell. Water Research, 2021, 188, 116498.	5.3	82
97	Transport of Organic Compounds With Saturated Groundwater Flow: Experimental Results. Water Resources Research, 1986, 22, 285-295.	1.7	81
98	Distribution and source of microplastics in China's second largest reservoir - Danjiangkou Reservoir. Journal of Environmental Sciences, 2021, 102, 74-84.	3.2	81
99	Prediction of multicomponent adsorption equilibria in background mixtures of unknown composition. Water Research, 1985, 19, 1537-1548.	5.3	80
100	Cu2O nanocrystals/TiO2 microspheres film on a rotating disk containing long-afterglow phosphor for enhanced round-the-clock photocatalysis. Applied Catalysis B: Environmental, 2018, 224, 239-248.	10.8	80
101	NH3-SCR performance of WO3 blanketed CeO2 with different morphology: Balance of surface reducibility and acidity. Catalysis Today, 2019, 332, 42-48.	2.2	79
102	The individual and Co-exposure degradation of benzophenone derivatives by UV/H2O2 and UV/PDS in different water matrices. Water Research, 2019, 159, 102-110.	5.3	79
103	Efficient sulfadiazine degradation via in-situ epitaxial grow of Graphitic Carbon Nitride (g-C3N4) on carbon dots heterostructures under visible light irradiation: Synthesis, mechanisms and toxicity evaluation. Journal of Colloid and Interface Science, 2020, 561, 696-707.	5.0	79
104	Decolorization of industrial wastewater by ozonation followed by adsorption on activated carbon. Journal of Hazardous Materials, 2010, 176, 181-185.	6.5	76
105	Infrastructure ecology: an evolving paradigm for sustainable urban development. Journal of Cleaner Production, 2017, 163, S19-S27.	4.6	76
106	Preparing future engineers for challenges of the 21st century: Sustainable engineering. Journal of Cleaner Production, 2010, 18, 698-701.	4.6	75
107	Deactivation Mechanism of Multipoisons in Cement Furnace Flue Gas on Selective Catalytic Reduction Catalysts. Environmental Science & Environmental Sc	4.6	75
108	Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater – a perspective. Environmental Science: Nano, 2020, 7, 2178-2194.	2.2	74

#	Article	IF	CITATIONS
109	Predictive Model for Design of Fixed-Bed Adsorbers: Single-Component Model Verification. American Society of Civil Engineers, Journal of the Environmental Engineering Division, 1978, 104, 433-443.	0.3	74
110	Effects of Chloride Ions on Dissolution, ROS Generation, and Toxicity of Silver Nanoparticles under UV Irradiation. Environmental Science & Environmen	4.6	73
111	Synergistic activation of peroxymonosulfate and persulfate by ferrous ion and molybdenum disulfide for pollutant degradation: Theoretical and experimental studies. Chemosphere, 2020, 240, 124979.	4.2	72
112	Decontamination of water using adsorption and photocatalysis. Water Research, 1997, 31, 411-418.	5.3	70
113	Viewpoint: Adding Sustainability to the Engineer's Toolbox: A Challenge for Engineering Educators. Environmental Science & Env	4.6	70
114	A comparison of pilot-scale photocatalysis and enhanced coagulation for disinfection byproduct mitigation. Water Research, 2009, 43, 1597-1610.	5.3	70
115	Mining of the association rules between industrialization level and air quality to inform high-quality development in China. Journal of Environmental Management, 2019, 246, 564-574.	3.8	70
116	Oxidation Mechanisms of the UV/Free Chlorine Process: Kinetic Modeling and Quantitative Structure Activity Relationships. Environmental Science & Envi	4.6	70
117	Novel RGO/α-FeOOH supported catalyst for Fenton oxidation of phenol at a wide pH range using solar-light-driven irradiation. Journal of Hazardous Materials, 2017, 329, 321-329.	6.5	69
118	Life cycle assessment of small-scale greywater reclamation systems combined with conventional centralized water systems for the City of Atlanta, Georgia. Journal of Cleaner Production, 2018, 174, 333-342.	4.6	67
119	Performance of Modified La _{<i>x</i>} Sr _{1â€"<i>x</i>} MnO ₃ Perovskite Catalysts for NH ₃ Oxidation: TPD, DFT, and Kinetic Studies. Environmental Science & Environmental Science & Technology, 2018, 52, 7443-7449.	4.6	67
120	Deep Dehalogenation of Florfenicol Using Crystalline CoP Nanosheet Arrays on a Ti Plate via Direct Cathodic Reduction and Atomic H. Environmental Science & Technology, 2019, 53, 11932-11940.	4.6	67
121	Heterogeneous degradation of carbamazepine by Prussian blue analogues in the interlayers of layered double hydroxides: performance, mechanism and toxicity evaluation. Journal of Materials Chemistry A, 2019, 7, 342-352.	5.2	67
122	Facilitating Redox Cycles of Copper Species by Pollutants in Peroxymonosulfate Activation. Environmental Science & Environment	4.6	67
123	Excessive phosphorus enhances Chlorella regularis lipid production under nitrogen starvation stress during glucose heterotrophic cultivation. Chemical Engineering Journal, 2017, 330, 566-572.	6.6	65
124	Using the Green Solvent Dimethyl Sulfoxide To Replace Traditional Solvents Partly and Fabricating PVC/PVC- <i>g</i> -PEGMA Blended Ultrafiltration Membranes with High Permeability and Rejection. Industrial & Description of the Membranes with High Permeability and Rejection. Industrial & Description of the Membranes with High Permeability and Rejection.	1.8	65
125	Photocatalytic inactivation of Cryptosporidium parvum with TiO2 and low-pressure ultraviolet irradiation. Water Research, 2008, 42, 1523-1530.	5. 3	64
126	Sustained molecular oxygen activation by solid iron doped silicon carbide under microwave irradiation: Mechanism and application to norfloxacin degradation. Water Research, 2017, 126, 274-284.	5.3	64

#	Article	IF	CITATIONS
127	Sustainability in Engineering Education and Research at U.S. Universities. Environmental Science & Emp; Technology, 2009, 43, 5558-5564.	4.6	63
128	Blended PVC/PVC-g-PEGMA ultrafiltration membranes with enhanced performance and antifouling properties. Applied Surface Science, 2018, 455, 987-996.	3.1	62
129	Superselective Hg(II) Removal from Water Using a Thiol-Laced MOF-Based Sponge Monolith: Performance and Mechanism. Environmental Science & Environment	4.6	62
130	Conductive and hydrophilic polypyrrole modified membrane cathodes and fouling reduction in MBR. Journal of Membrane Science, 2013, 429, 252-258.	4.1	61
131	Selfâ€Optimization of the Active Site of Molybdenum Disulfide by an Irreversible Phase Transition during Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2017, 129, 7718-7722.	1.6	61
132	Quantitative structure-activity relationship models for predicting reaction rate constants of organic contaminants with hydrated electrons and their mechanistic pathways. Water Research, 2019, 151, 468-477.	5.3	61
133	Sulfadiazine destruction by chlorination in a pilot-scale water distribution system: Kinetics, pathway, and bacterial community structure. Journal of Hazardous Materials, 2019, 366, 88-97.	6.5	61
134	Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Synthesis and Microstructure Impacts. ACS ES&T Engineering, 2021, 1, 623-661.	3.7	61
135	Occurrence and risk assessment of selected phthalates in drinking water from waterworks in China. Environmental Science and Pollution Research, 2015, 22, 10690-10698.	2.7	60
136	Simulating the performance of fixed-bed granular activated carbon adsorbers: Removal of synthetic organic chemicals in the presence of background organic matter. Water Research, 2005, 39, 2407-2421.	5.3	59
137	Can virtual water trade save water resources?. Water Research, 2019, 163, 114848.	5.3	59
138	Modeling the movement of volatile organic chemicals in columns of unsaturated soil. Water Resources Research, 1990, 26, 1529-1547.	1.7	57
139	Technology status and trends of industrial wastewater treatment: A patent analysis. Chemosphere, 2022, 288, 132483.	4.2	57
140	Linear Free Energy Relationships between Aqueous phase Hydroxyl Radical Reaction Rate Constants and Free Energy of Activation. Environmental Science & Energy of Activation. Environmental Science & Energy of Activation.	4.6	56
141	Insight into chloride effect on the UV/peroxymonosulfate process. Chemical Engineering Journal, 2018, 352, 477-489.	6.6	56
142	Tannic acid-metal complex modified MXene membrane for contaminants removal from water. Journal of Membrane Science, 2021, 622, 119042.	4.1	56
143	Does microplastic really represent a threat? A review of the atmospheric contamination sources and potential impacts. Science of the Total Environment, 2021, 777, 146020.	3.9	56
144	The influence of mass transfer on solute transport in column experiments with an aggregated soil. Journal of Contaminant Hydrology, 1987, 1, 375-393.	1.6	55

#	Article	IF	Citations
145	Photochemical Transformation and Photoinduced Toxicity Reduction of Silver Nanoparticles in the Presence of Perfluorocarboxylic Acids under UV Irradiation. Environmental Science & Eamp; Technology, 2014, 48, 4946-4953.	4.6	55
146	Life cycle assessment of low impact development technologies combined with conventional centralized water systems for the City of Atlanta, Georgia. Frontiers of Environmental Science and Engineering, 2016, $10,1.$	3.3	55
147	Fabrication of visible-light active Fe2O3-GQDs/NF-TiO2 composite film with highly enhanced photoelectrocatalytic performance. Applied Catalysis B: Environmental, 2017, 205, 347-356.	10.8	54
148	Effective degradation of aqueous carbamazepine on a novel blue-colored TiO2 nanotube arrays membrane filter anode. Journal of Hazardous Materials, 2021, 402, 123530.	6.5	54
149	Environmental Impacts over the Life Cycle of Residential Buildings Using Different Exterior Wall Systems. Journal of Infrastructure Systems, 2009, 15, 211-221.	1.0	53
150	Closed-Loop Electrochemical Recycling of Spent Copper(II) from Etchant Wastewater Using a Carbon Nanotube Modified Graphite Felt Anode. Environmental Science & Environmental Science & 2018, 52, 5940-5948.	4.6	53
151	Integration of microbial fuel cell with independent membrane cathode bioreactor for power generation, membrane fouling mitigation and wastewater treatment. International Journal of Hydrogen Energy, 2014, 39, 17865-17872.	3.8	52
152	Removal of dissolved organic carbon using granular activated carbon. Water Research, 1993, 27, 715-721.	5.3	51
153	Cd complexation with mercapto-functionalized attapulgite (MATP): Adsorption and DFT study. Chemical Engineering Journal, 2019, 366, 569-576.	6.6	51
154	Adsorption mechanism for removing different species of fluoride by designing of core-shell boehmite. Journal of Hazardous Materials, 2020, 394, 122555.	6.5	51
155	Organics removal from shale gas wastewater by pre-oxidation combined with biologically active filtration. Water Research, 2021, 196, 117041.	5.3	51
156	Non-negligible risk of chloropicrin formation during chlorination with the UV/persulfate pretreatment process in the presence of low concentrations of nitrite. Water Research, 2020, 168, 115194.	5.3	50
157	Evaluating UV/H2O2 processes for methyl tert-butyl ether and tertiary butyl alcohol removal: Effect of pretreatment options and light sources. Water Research, 2008, 42, 5045-5053.	5.3	49
158	Regional energy rebound effect: The impact of economy-wide and sector level energy efficiency improvement in Georgia, USA. Energy Policy, 2015, 87, 250-259.	4.2	49
159	Quorum sensing molecules in activated sludge could trigger microalgae lipid synthesis. Bioresource Technology, 2018, 263, 576-582.	4.8	49
160	Simultaneous Removal of SO ₂ and NO Using a Novel Method of Ultraviolet Irradiating Chlorite–Ammonia Complex. Environmental Science & Environmental Science & 2019, 53, 9014-9023.	4.6	49
161	Spatial variations and periodic changes in heavy metals in surface water and sediments of the Three Gorges Reservoir, China. Chemosphere, 2020, 240, 124837.	4.2	49
162	Highly Selective PdCu/Amorphous Silicaâ^'Alumina (ASA) Catalysts for Groundwater Denitration. Environmental Science & Environm	4.6	48

#	Article	IF	CITATIONS
163	Experimental and DFT studies on Sr-doped LaMnO ₃ catalysts for NO _x storage and reduction. Catalysis Science and Technology, 2015, 5, 2478-2485.	2.1	48
164	An approach for evaluating nanomaterials for use as packed bed adsorber media: A case study of arsenate removal by titanate nanofibers. Journal of Hazardous Materials, 2008, 156, 604-611.	6.5	47
165	User-oriented batch reactor solutions to the homogeneous surface diffusion model for different activated carbon dosages. Water Research, 2009, 43, 1859-1866.	5.3	46
166	Environmental Impacts of China's Urbanization from 2000 to 2010 and Management Implications. Environmental Management, 2016, 57, 498-507.	1.2	45
167	Air pollutant emissions from economic sectors in China: A linkage analysis. Ecological Indicators, 2017, 77, 250-260.	2.6	45
168	Development of a Three-Dimensional Electrochemical System Using a Blue TiO ₂ /SnO ₂ 2 Anode for Treating Low-lonic-Strength Wastewater. Environmental Science & Dept. 2019, 53, 13784-13793.	4.6	45
169	INTERCONNECTEDNESS AND RESILIENCE OF THE U.S. ECONOMY. International Journal of Modeling, Simulation, and Scientific Computing, 2011, 14, 649-672.	0.9	44
170	Excellent performance of cobalt-impregnated activated carbon in peroxymonosulfate activation for acid orange 7 oxidation. Environmental Science and Pollution Research, 2017, 24, 9651-9661.	2.7	44
171	Electrocatalytic dechlorination of halogenated antibiotics via synergistic effect of chlorine-cobalt bond and atomic H*. Journal of Hazardous Materials, 2018, 358, 294-301.	6.5	44
172	Enhanced persulfate oxidation of organic pollutants and removal of total organic carbons using natural magnetite and microwave irradiation. Chemical Engineering Journal, 2020, 383, 123140.	6.6	44
173	UV Photolysis of Trichloroethylene:Â Product Study and Kinetic Modeling. Environmental Science & Environmental & Environmental & Environmental & Environmental & Environmental	4.6	43
174	Experimental approach for an in vitro toxicity assay with non-aggregated quantum dots. Toxicology in Vitro, 2009, 23, 955-962.	1.1	43
175	Bibliometric analysis of insights into soil remediation. Journal of Soils and Sediments, 2018, 18, 2520-2534.	1.5	43
176	Measuring urban environmental sustainability performance in China: A multi-scale comparison among different cities, urban clusters, and geographic regions. Cities, 2019, 94, 200-210.	2.7	43
177	Recovery of Critical Metals from Aqueous Sources. ACS Sustainable Chemistry and Engineering, 2021, 9, 11616-11634.	3.2	43
178	Developing a Science of Infrastructure Ecology for Sustainable Urban Systems. Environmental Science & Ecology, 2012, 46, 7928-7929.	4.6	42
179	Distribution and sources of polycyclic aromatic hydrocarbons and phthalic acid esters in water and surface sediment from the Three Gorges Reservoir. Journal of Environmental Sciences, 2018, 69, 271-280.	3.2	42
180	Contrasting abiotic As(III) immobilization by undissolved and dissolved fractions of biochar in Ca2+-rich groundwater under anoxic conditions. Water Research, 2020, 183, 116106.	5.3	42

#	Article	IF	CITATIONS
181	Model for Design of Multicomponent Adsorption Systems. American Society of Civil Engineers, Journal of the Environmental Engineering Division, 1978, 104, 1175-1195.	0.3	42
182	Development of Linear Free Energy Relationships for Aqueous Phase Radical-Involved Chemical Reactions. Environmental Science &	4.6	41
183	Life cycle assessment of the City of Atlanta, Georgia's centralized water system. International Journal of Life Cycle Assessment, 2015, 20, 880-891.	2.2	41
184	In situ growth of Ag-SnO2 quantum dots on silver phosphate for photocatalytic degradation of carbamazepine: Performance, mechanism and intermediates toxicity assessment. Journal of Colloid and Interface Science, 2019, 534, 270-278.	5. O	41
185	Cost–benefit analysis of GHG emission reduction in waste to energy projects of China under clean development mechanism. Resources, Conservation and Recycling, 2016, 109, 90-95.	5.3	40
186	The case study of combined cooling heat and power and photovoltaic systems for building customers using HOMER software. Electric Power Systems Research, 2017, 143, 490-502.	2.1	40
187	Dietary Uptake Patterns Affect Bioaccumulation and Biomagnification of Hydrophobic Organic Compounds in Fish. Environmental Science & Echnology, 2019, 53, 4274-4284.	4.6	40
188	Transformation of arsenic during realgar tailings stabilization using ferrous sulfate in a pilot-scale treatment. Science of the Total Environment, 2019, 668, 32-39.	3.9	40
189	Rare Earth Elements Occurrence and Economical Recovery Strategy from Shale Gas Wastewater in the Sichuan Basin, China. ACS Sustainable Chemistry and Engineering, 2020, 8, 11914-11920.	3.2	40
190	Development of a highly efficient electrochemical flow-through anode based on inner in-site enhanced TiO2-nanotubes array. Environment International, 2020, 140, 105813.	4.8	40
191	Using GAC to Remove VOCs From Air Stripper Offâ€Gas. Journal - American Water Works Association, 1988, 80, 73-84.	0.2	39
192	Reactivity of Aqueous Phase Hydroxyl Radical with Halogenated Carboxylate Anions: Experimental and Theoretical Studies. Environmental Science & Environmental Envi	4.6	39
193	The effectiveness of coagulation for water reclamation from a wastewater treatment plant that has a long hydraulic and sludge retention times: A case study. Chemosphere, 2016, 157, 224-231.	4.2	39
194	Data-enabled public preferences inform integration of autonomous vehicles with transit-oriented development in Atlanta. Cities, 2017, 63, 118-127.	2.7	39
195	The synergistic mechanism of NO _x and chlorobenzene degradation in municipal solid waste incinerators. Catalysis Science and Technology, 2019, 9, 4286-4292.	2.1	39
196	Effects of Metal Precursors on the Stability and Observed Reactivity of Pt/γâ€Al ₂ O ₃ Catalysts in Aqueous Phase Reactions. ChemCatChem, 2012, 4, 492-494.	1.8	38
197	An electrochemical process that uses an FeO/TiO2 cathode to degrade typical dyes and antibiotics and a bio-anode that produces electricity. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	3.3	38
198	PVDF blended PVDF-g-PMAA pH-responsive membrane: Effect of additives and solvents on membrane properties and performance. Journal of Membrane Science, 2017, 541, 558-566.	4.1	38

#	Article	IF	CITATIONS
199	Evaluation of eutrophication in freshwater lakes: A new non-equilibrium statistical approach. Ecological Indicators, 2019, 102, 686-692.	2.6	38
200	Electrochemical advanced oxidation for treating ultrafiltration effluent of a landfill leachate system: Impacts of organics and inorganics and economic evaluation. Chemical Engineering Journal, 2021, 413, 127492.	6.6	37
201	Optimization of Biofiltration for Odor Control: Model Calibration, Validation, and Applications. Water Environment Research, 2002, 74, 17-27.	1.3	36
202	Non-woven PET fabric reinforced and enhanced the performance of ultrafiltration membranes composed of PVDF blended with PVDF-g-PEGMA for industrial applications. Applied Surface Science, 2018, 435, 1072-1079.	3.1	36
203	Research Development on Sustainable Urban Infrastructure From 1991 to 2017: A Bibliometric Analysis to Inform Future Innovations. Earth's Future, 2019, 7, 718-733.	2.4	36
204	Electrochemical flow-through disinfection reduces antibiotic resistance genes and horizontal transfer risk across bacterial species. Water Research, 2022, 212, 118090.	5.3	36
205	The pH effects on H2 evolution kinetics for visible light water splitting over the Ru/(CuAg)0.15In0.3Zn1.4S2 photocatalyst. International Journal of Hydrogen Energy, 2013, 38, 11727-11736.	3.8	35
206	Fractal dimensions of metropolitan area road networks and the impacts on the urban built environment. Ecological Indicators, 2016, 70, 285-296.	2.6	35
207	Sustainable plants in urban parks: A life cycle analysis of traditional and alternative lawns in Georgia, USA. Landscape and Urban Planning, 2014, 122, 140-151.	3.4	34
208	Photocatalytic reduction of triclosan on Au–Cu ₂ O nanowire arrays as plasmonic photocatalysts under visible light irradiation. Physical Chemistry Chemical Physics, 2015, 17, 17421-17428.	1.3	34
209	A combination of electro-enzymatic catalysis and electrocoagulation for the removal of endocrine disrupting chemicals from water. Journal of Hazardous Materials, 2015, 297, 269-277.	6.5	34
210	Irregular influence of alkali metals on Cu-SAPO-34 catalyst for selective catalytic reduction of NOx with ammonia. Journal of Hazardous Materials, 2020, 387, 122007.	6.5	34
211	Simultaneous sulfamethazine oxidation and bromate reduction by Pd-mediated Z-scheme Bi2MoO6/g-C3N4 photocatalysts: Synergetic mechanism and degradative pathway. Chemical Engineering Journal, 2020, 401, 126061.	6.6	34
212	Dechlorination and decomposition of chloroform induced by glow discharge plasma in an aqueous solution. Journal of Hazardous Materials, 2016, 308, 84-90.	6.5	33
213	Nanomaterial Adsorbent Design: From Bench Scale Tests to Engineering Design. Environmental Science & Engineering Design. Environmental Environ	4.6	33
214	Parametric life cycle assessment for distributed combined cooling, heating and power integrated with solar energy and energy storage. Journal of Cleaner Production, 2020, 250, 119483.	4.6	33
215	Computerized Pathway Elucidation for Hydroxyl Radical-Induced Chain Reaction Mechanisms in Aqueous Phase Advanced Oxidation Processes. Environmental Science & Environmental Science & 2831-2837.	4.6	32
216	Forming mechanism study of unique pillar-like and defect-free PVDF ultrafiltration membranes with high flux. Journal of Membrane Science, 2015, 487, 1-11.	4.1	32

#	Article	IF	Citations
217	Impact of maintenance on life cycle impact and cost assessment for residential flooring options. International Journal of Life Cycle Assessment, 2015, 20, 36-45.	2.2	32
218	The preparation and performance of lignin-based activated carbon fiber adsorbents for treating gaseous streams. Frontiers of Chemical Science and Engineering, 2017, 11, 328-337.	2.3	32
219	Silica deposition as an approach for improving the hydrothermal stability of an alumina support during glycerol aqueous phase reforming. Applied Catalysis A: General, 2018, 551, 13-22.	2.2	32
220	Acceleration of saturated porous media clogging and silicon dissolution due to low concentrations of Al(III) in the recharge of reclaimed water. Water Research, 2018, 143, 136-145.	5.3	32
221	Smart ultrafiltration membrane fouling control as desalination pretreatment of shale gas fracturing wastewater: The effects of backwash water. Environment International, 2019, 130, 104869.	4.8	32
222	Stability of an H2-producing photocatalyst (Ru/(CuAg)0.15In0.3Zn1.4S2) in aqueous solution under visible light irradiation. International Journal of Hydrogen Energy, 2013, 38, 1286-1296.	3.8	31
223	Computer-Based First-Principles Kinetic Modeling of Degradation Pathways and Byproduct Fates in Aqueous-Phase Advanced Oxidation Processes. Environmental Science & Environmental Science & 2014, 48, 5718-5725.	4.6	31
224	A freestanding graphene oxide membrane for efficiently harvesting salinity gradient power. Carbon, 2018, 138, 410-418.	5.4	31
225	Fabrication and Electrochemical Treatment Application of an Al-Doped PbO ₂ Electrode with High Oxidation Capability, Oxygen Evolution Potential and Reusability. Journal of the Electrochemical Society, 2015, 162, E258-E262.	1.3	30
226	Hormesis effects of phosphorus on the viability of Chlorella regularis cells under nitrogen limitation. Biotechnology for Biofuels, 2019, 12, 121.	6.2	30
227	Rational tuning towards A/B-sites double-occupying cobalt on tri-metallic spinel: Insights into its catalytic activity on toluene catalytic oxidation. Chemical Engineering Journal, 2020, 399, 125792.	6.6	30
228	Insights into modified red mud for the selective catalytic reduction of NO: Activation mechanism of targeted leaching. Journal of Hazardous Materials, 2020, 394, 122536.	6.5	30
229	Fabrication of Nanohybrid Spinel@CuO Catalysts for Propane Oxidation: Modified Spinel and Enhanced Activity by Temperature-Dependent Acid Sites. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27106-27118.	4.0	30
230	Regeneration of spent adsorbents using homogeneous advanced oxidation. Water Environment Research, 1995, 67, 355-363.	1.3	29
231	Development of a Framework for Quantifying the Environmental Impacts of Urban Development and Construction Practices. Environmental Science & Environmental Science & 2007, 41, 5130-5136.	4.6	28
232	Gigaton Problems Need Gigaton Solutions. Environmental Science & Environmental	4.6	28
233	Influence of climate on the environmental and economic life cycle assessments of window options in the United States. Energy and Buildings, 2015, 102, 293-306.	3.1	28
234	High-performance polyamide thin-film composite nanofiltration membrane: Role of thermal treatment. Applied Surface Science, 2018, 435, 415-423.	3.1	28

#	Article	IF	CITATIONS
235	Harnessing Energy for a Sustainable World. Journal of the American Chemical Society, 2010, 132, 4503-4505.	6.6	27
236	Solar photoreactor design by the photon path length and optimization of the radiant field in a TiO 2 -based CPC reactor. Chemical Engineering Journal, 2017, 315, 283-295.	6.6	27
237	Low concentrations of Al(III) accelerate the formation of biofilm: Multiple effects of hormesis and flocculation. Science of the Total Environment, 2018, 634, 516-524.	3.9	27
238	Removal of gaseous elemental mercury using thermally catalytic chlorite-persulfate complex. Chemical Engineering Journal, 2020, 391, 123508.	6.6	27
239	Distinctive Bimetallic Oxides for Enhanced Catalytic Toluene Combustion: Insights into the Tunable Fabrication of Mnâ^'Ce Hollow Structure. ChemCatChem, 2020, 12, 2872-2879.	1.8	27
240	Development of novel CaCO 3 /Fe 2 O 3 nanorods for low temperature 1,2-dichlorobenzene oxidation. Applied Catalysis A: General, 2016, 522, 70-79.	2.2	26
241	Impacts of Combined Cooling, Heating and Power Systems, and Rainwater Harvesting on Water Demand, Carbon Dioxide, and NO _{<i>x</i>} Emissions for Atlanta. Environmental Science & Emps; Technology, 2018, 52, 3-10.	4.6	26
242	Distribution characteristics and pollution risk evaluation of the nitrogen and phosphorus species in the sediments of Lake Erhai, Southwest China. Environmental Science and Pollution Research, 2019, 26, 22295-22304.	2.7	26
243	Green and sustainable method of manufacturing anti-fouling zwitterionic polymers-modified poly(vinyl chloride) ultrafiltration membranes. Journal of Colloid and Interface Science, 2021, 591, 343-351.	5.0	26
244	Promoting effect of Co-doped CeO2 nanorods activity and SO2 resistance for HgO removal. Fuel, 2022, 317, 123320.	3.4	26
245	Resource Recovery and Reuse for Hydraulic Fracturing Wastewater in Unconventional Shale Gas and Oil Extraction. Environmental Science & Eamp; Technology, 2019, 53, 13547-13548.	4.6	25
246	Modified red mud catalyst for the selective catalytic reduction of nitrogen oxides: Impact mechanism of cerium precursors on surface physicochemical properties. Chemosphere, 2020, 257, 127215.	4.2	25
247	On-Site Treatment of Shale Gas Flowback and Produced Water in Sichuan Basin by Fertilizer Drawn Forward Osmosis for Irrigation. Environmental Science & Environmental Science & 2020, 54, 10926-10935.	4.6	25
248	Ferric ion promoted degradation of acetaminophen with zeroÂâ^'Âvalent copper activated peroxymonosulfate process. Chemical Engineering Journal, 2021, 426, 131679.	6.6	25
249	Modified Silica Adsorbents for Toluene Adsorption under Dry and Humid Conditions: Impacts of Pore Size and Surface Chemistry. Langmuir, 2019, 35, 8927-8934.	1.6	24
250	Multidisciplinary design optimization of distributed energy generation systems: The trade-offs between life cycle environmental and economic impacts. Applied Energy, 2021, 284, 116197.	5.1	24
251	Microwave-assisted chemical recovery of glass fiber and epoxy resin from non-metallic components in waste printed circuit boards. Waste Management, 2021, 124, 8-16.	3.7	24
252	Real-Time Ozone Detection Based on a Microfabricated Quartz Crystal Tuning Fork Sensor. Sensors, 2009, 9, 5655-5663.	2.1	23

#	Article	IF	CITATIONS
253	Thin-film composite forward osmosis membranes with substrate layer composed of polysulfone blended with PEG or polysulfone grafted PEG methyl ether methacrylate. Frontiers of Chemical Science and Engineering, 2016, 10, 562-574.	2.3	23
254	Statistical optimization and batch studies on adsorption of phosphate using Al-eggshell. Adsorption Science and Technology, 2018, 36, 999-1017.	1.5	23
255	An effective process for the recovery of valuable metals from cathode material of lithium-ion batteries by mechanochemical reduction. Resources, Conservation and Recycling, 2021, 168, 105261.	5. 3	23
256	Photocatalytic hydrogen production under visible-light irradiation on (CuAg)0.15In0.3Zn1.4S2 synthesized by precipitation and calcination. Chinese Journal of Catalysis, 2013, 34, 1926-1935.	6.9	22
257	Spatial variation and sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the Yangtze Estuary, China. Environmental Sciences: Processes and Impacts, 2015, 17, 1340-1347.	1.7	22
258	Preparation and Photoelectrochemical Performance of Visible-Light Active AgI/TiO ₂ -NTs Composite with Rich β-AgI. Industrial & Engineering Chemistry Research, 2016, 55, 4897-4904.	1.8	22
259	Weak-Bond-Based Photoreduction of Polybrominated Diphenyl Ethers on Graphene in Water. ACS Sustainable Chemistry and Engineering, 2018, 6, 6711-6717.	3.2	22
260	Biomass combustion: Environmental impact of various precombustion processes. Journal of Cleaner Production, 2020, 261, 121217.	4.6	22
261	Simulating the effect of light rail on urban growth in Phoenix: An application of the UrbanSim modeling environment. Journal of Urban Technology, 2006, 13, 91-111.	2.5	21
262	Arsenate Removal by Iron (Hydr)Oxide Modified Granulated Activated Carbon: Modeling Arsenate Breakthrough with the Pore Surface Diffusion Model. Separation Science and Technology, 2008, 43, 3154-3167.	1.3	21
263	Treatment of Antibiotic Pharmaceutical Wastewater Using a Rotating Biological Contactor. Journal of Chemistry, 2015, 2015, 1-8.	0.9	21
264	Removal of calcium and magnesium ions from shale gas flowback water by chemically activated zeolite. Water Science and Technology, 2017, 76, 575-583.	1.2	21
265	PVDF ultrafiltration membranes of controlled performance via blending PVDF-g-PEGMA copolymer synthesized under different reaction times. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	3.3	21
266	Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen production. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	3.3	21
267	Acid-pretreated red mud for selective catalytic reduction of NO with NH3: Insights into inhibition mechanism of binders. Catalysis Today, 2021, 376, 247-254.	2.2	21
268	Enhanced photocatalytic H2 evolution over In2S3 via decoration with GO and Fe2P co-catalysts. International Journal of Hydrogen Energy, 2021, 46, 18376-18390.	3.8	21
269	Multi-functional tannic acid (TA)-Ferric complex coating for forward osmosis membrane with enhanced micropollutant removal and antifouling property. Journal of Membrane Science, 2021, 626, 119171.	4.1	21
270	Now is the Time for Action: Transitions and Tipping Points in Complex Environmental Systems. Environment, 2010, 52, 38-45.	0.8	20

#	Article	IF	CITATIONS
271	Use of Impact Fees To Incentivize Low-Impact Development and Promote Compact Growth. Environmental Science & Environmental Sci	4.6	20
272	Enhanced Photocatalytic Activity of SiC-Based Ternary Graphene Materials: A DFT Study and the Photocatalytic Mechanism. ACS Omega, 2019, 4, 20142-20151.	1.6	20
273	Quantitative structure-activity relationship models for predicting singlet oxygen reaction rate constants of dissociating organic compounds. Science of the Total Environment, 2020, 735, 139498.	3.9	20
274	Thermodynamic analysis of a solar thermal facilitated membrane seawater desalination process. Journal of Cleaner Production, 2020, 256, 120398.	4.6	20
275	Extraction of PFOA from dilute wastewater using ionic liquids that are dissolved in N-octanol. Journal of Hazardous Materials, 2021, 404, 124091.	6.5	20
276	Cation-Ï€ induced surface cleavage of organic pollutants with âOH formation from H2O for water treatment. IScience, 2021, 24, 102874.	1.9	20
277	A novel lanthanum-modified copper tailings adsorbent for phosphate removal from water. Chemosphere, 2021, 281, 130779.	4.2	20
278	Optimization of Biofiltration for Odor Control: Model Development and Parameter Sensitivity. Water Environment Research, 2002, 74, 5-16.	1.3	19
279	Design of visible light responsive photocatalysts for selective reduction of chlorinated organic compounds in water. Applied Catalysis A: General, 2016, 521, 90-95.	2.2	19
280	Mass balance-based regression modeling of Cd and Zn accumulation in urban soils of Beijing. Journal of Environmental Sciences, 2017, 53, 99-106.	3.2	19
281	Kinetics and mechanism of $17\hat{l}^2$ -estradiol chlorination in a pilot-scale water distribution systems. Chemosphere, 2017, 178, 73-79.	4.2	19
282	Study on the Transport Mechanism of a Freestanding Graphene Oxide Membrane for Forward Osmosis. Environmental Science & Enviro	4.6	19
283	Simultaneous Nitrite Resourcing and Mercury Ion Removal Using MXene-Anchored Goethite Heterogeneous Fenton Composite. Environmental Science & Environmental Environmenta	4.6	19
284	Should We Consider Using Liquid Fluoride Thorium Reactors for Power Generation?. Environmental Science & Environmental Science	4.6	18
285	Acid-Catalyzed Transformation of Ionophore Veterinary Antibiotics: Reaction Mechanism and Product Implications. Environmental Science & Environmental	4.6	18
286	Stabilization and Mineralization Mechanism of Cd with Cu-Loaded Attapulgite Stabilizer Assisted with Microwave Irradiation. Environmental Science & En	4.6	18
287	Synergistic effect of floatable hydroxyapatite-modified biochar adsorption and low-level CaCl2 leaching on Cd removal from paddy soil. Science of the Total Environment, 2022, 807, 150872.	3.9	18
288	MXene Composite Membranes with Enhanced Ion Transport and Regulated Ion Selectivity. Environmental Science & Environmental Sci	4.6	18

#	Article	IF	Citations
289	Seven Approaches to Manage Complex Coupled Human and Natural Systems: A Sustainability Toolbox. Environmental Science & Enviro	4.6	17
290	Electrochemical Pretreatment for Sludge Sulfide Control without Chemical Dosing: A Mechanistic Study. Environmental Science & Echnology, 2019, 53, 14559-14567.	4.6	17
291	The mechanism of microwave-induced mineral transformation and stabilization of arsenic in realgar tailings using ferrous sulfate. Chemical Engineering Journal, 2020, 393, 124732.	6.6	17
292	Rice husk-derived biochar can aggravate arsenic mobility in ferrous-rich groundwater during oxygenation. Water Research, 2021, 200, 117264.	5. 3	17
293	Enhanced electricity generation by triclosan and iron anodes in the three-chambered membrane bio-chemical reactor (TC-MBCR). Bioresource Technology, 2013, 147, 409-415.	4.8	16
294	On-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processes. Environmental Science & Environmental	4.6	16
295	Novel off-Gas Treatment Technology To Remove Volatile Organic Compounds with High Concentration. Industrial & Description of the Concentration of the Concen	1.8	16
296	Bioresources inner-recycling between bioflocculation of Microcystis aeruginosa and its reutilization as a substrate for bioflocculant production. Scientific Reports, 2017, 7, 43784.	1.6	16
297	Emerging Challenges and Opportunities for Electrified Membranes to Enhance Water Treatment. Environmental Science & Environmen	4.6	16
298	Activated carbon enhanced ozonation of oxalate attributed to HO oxidation in bulk solution and surface oxidation: Effect of activated carbon dosage and pH. Journal of Environmental Sciences, 2014, 26, 2095-2105.	3.2	15
299	Promotion mechanism of natural clay colloids in the adsorption of arsenite on iron oxide particles in water. Chemical Engineering Journal, 2020, 392, 123637.	6.6	15
300	Efficient photocatalytic H ₂ production using visible-light irradiation and (CuAg) <i>>_x</i> >li>ln _{2<i>x</i>>p with tunable band gaps. International Journal of Energy Research, 2014, 38, 1513-1521.}	ho z ocataly	vst s 4
301	Effects of inorganic electron donors in photocatalytic hydrogen production over Ru/(CuAg)0.15In0.3Zn1.4S2 under visible light irradiation. Journal of Renewable and Sustainable Energy, 2014, 6, 033131.	0.8	14
302	Different transport behaviors of Bacillus subtilis cells and spores in saturated porous media: Implications for contamination risks associated with bacterial sporulation in aquifer. Colloids and Surfaces B: Biointerfaces, 2018, 162, 35-42.	2.5	14
303	Strong degradation of orange II by activation of peroxymonosulfate using combination of ferrous ion and zero-valent copper. Separation and Purification Technology, 2021, 278, 119509.	3.9	14
304	Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	3.3	14
305	Radix Astragali residue-derived porous amino-laced double-network hydrogel for efficient Pb(II) removal: Performance and modeling. Journal of Hazardous Materials, 2022, 438, 129418.	6.5	14
306	PVDF layer as a separator on the solution-side of air-cathodes: the electricity generation, fouling and regeneration. RSC Advances, 2015, 5, 52361-52368.	1.7	13

#	Article	IF	Citations
307	Market potential for smart growth neighbourhoods in the USA: A latent class analysis on heterogeneous preference and choice. Urban Studies, 2015, 52, 3001-3017.	2.2	12
308	Degradation kinetics of target compounds and correlations with spectral indices during UV/H2O2 post-treatment of biologically treated acrylonitrile wastewater. Chemosphere, 2020, 243, 125384.	4.2	12
309	Green Synthesis of Mesoporous Sodalite and Graphene Oxide Hybrid Sodalite Using Lithium Silica Fume Waste. ACS Sustainable Chemistry and Engineering, 2021, 9, 5085-5094.	3.2	12
310	Accelerating Fe ^{III} -Aqua Complex Reduction in an Efficient Solid–Liquid-Interfacial Fenton Reaction over the Mn–CNH Co-catalyst at Near-Neutral pH. Environmental Science & Deck	4.6	12
311	Precise regulation of acid pretreatment for red mud SCR catalyst: Targeting on optimizing the acidity and reducibility. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	12
312	Double-Network Hydrogel: A Potential Practical Adsorbent for Critical Metals Extraction and Recovery from Water. Environmental Science & Environmental	4.6	12
313	Shale gas wastewater characterization: Comprehensive detection, evaluation of valuable metals, and environmental risks of heavy metals and radionuclides. Water Research, 2022, 220, 118703.	5.3	12
314	Mechanisms of Cu ²⁺ migration, recovery and detoxification in Cu ²⁺ -, -containing wastewater treatment process with anaerobic granular sludge. Environmental Technology (United Kingdom), 2014, 35, 1956-1961.	1.2	11
315	Computer-Based First-Principles Kinetic Monte Carlo Simulation of Polyethylene Glycol Degradation in Aqueous Phase UV/H ₂ O ₂ Advanced Oxidation Process. Environmental Science & E	4.6	11
316	Managing the Complexity of Urban Systems. Journal of Industrial Ecology, 2015, 19, 201-204.	2.8	11
317	A Survey of Soil Enzyme Activities along Major Roads in Beijing: The Implications for Traffic Corridor Green Space Management. International Journal of Environmental Research and Public Health, 2015, 12, 12475-12488.	1.2	11
318	Thermolytic osmotic heat engine for low-grade heat harvesting: Thermodynamic investigation and potential application exploration. Applied Energy, 2020, 259, 114192.	5.1	11
319	Forward Solute Transport in Forward Osmosis Using a Freestanding Graphene Oxide Membrane. Environmental Science & Environmental Science & Environmenta	4.6	11
320	Water, Air Emissions, and Cost Impacts of Air-Cooled Microturbines for Combined Cooling, Heating, and Power Systems: A Case Study in the Atlanta Region. Engineering, 2016, 2, 470-480.	3.2	10
321	High catalytic oxidation of As(III) by molecular oxygen over Fe-loaded silicon carbide with MW activation. Chemosphere, 2018, 198, 537-545.	4.2	10
322	Electrochemical oxidation of Microcystis aeruginosa using a Ti/RuO2 anode: contributions of electrochemically generated chlorines and hydrogen peroxide. Environmental Science and Pollution Research, 2018, 25, 27924-27934.	2.7	10
323	Why Was My Paper Rejected without Review?. Environmental Science & Environment	4.6	10
324	Key intermediates from simultaneous removal of NO _{<i>x</i>} and chlorobenzene over a V _{0₅6"WO₃/TiO₂ catalyst: a combined experimental and DFT study. Catalysis Science and Technology, 2021, 11, 7260-7267.}	2.1	9

#	Article	IF	CITATIONS
325	Theoretical evaluation of the evaporation rate of 2D solar-driven interfacial evaporation and of its large-scale application potential. Desalination, 2022, 537, 115891.	4.0	9
326	Does Simplifying Transport and Exposure Yield Reliable Results? An Analysis of Four Risk Assessment Methods. Environmental Science & Environmental Sci	4.6	8
327	Understanding the nature of NH ₃ -coordinated active sites and the complete reaction schemes for NH ₃ -SCR using Cu-SAPO-34 catalysts. Physical Chemistry Chemical Physics, 2021, 23, 4700-4710.	1.3	8
328	Computerized Pathway Generator for the UV/Free Chlorine Process: Prediction of Byproducts and Reactions. Environmental Science & Environmental Science	4.6	8
329	Properties of Commercial Nanoparticles that Affect Their Removal During Water Treatment., 0,, 69-90.		7
330	An infrastructure ecology approach for urban infrastructure sustainability and resiliency., 2011,,.		7
331	Courtyard integrated ecological system: An ecological engineering practice in China and its economic-environmental benefit. Journal of Cleaner Production, 2016, 133, 1363-1370.	4.6	7
332	Combined genotoxicity of chlorinated products from tyrosine and benzophenone-4. Journal of Hazardous Materials, 2017, 322, 387-393.	6. 5	7
333	Influence of the Exclusion-Enrichment Effect on Ion Transport in Two-Dimensional Molybdenum Disulfide Membranes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 26904-26914.	4.0	7
334	Oxidation of phthalate acid esters using hydrogen peroxide and polyoxometalate/graphene hybrids. Journal of Hazardous Materials, 2022, 422, 126867.	6. 5	7
335	Recommendations for Interdisciplinary Study of Tipping Points in Natural and Social Systems. Eos, 2010, 91, 143-144.	0.1	6
336	The self-preserving size distribution of fractal aggregates coagulating by Brownian motion and simultaneous fluid shear at low Peclet numbers: Numerical solutions. Journal of Aerosol Science, 2015, 87, 1-16.	1.8	6
337	DNA Damage in Euonymus japonicus Leaf Cells Caused by Roadside Pollution in Beijing. International Journal of Environmental Research and Public Health, 2016, 13, 742.	1.2	6
338	Effects of Heavy Metals from Soil and Dust Source on DNA Damage of the Leymus chinensis Leaves in Coal-Mining Area in Northwest China. PLoS ONE, 2016, 11, e0166522.	1.1	6
339	Combined autotrophic nitritation and bioelectrochemical-sulfur denitrification for treatment of ammonium rich wastewater with low C/N ratio. Environmental Science and Pollution Research, 2016, 23, 2329-2340.	2.7	6
340	Policy incentives and social cost of emissions for promoting decentralized energy production: A life cycle cost analysis. Journal of Cleaner Production, 2021, 282, 125394.	4.6	6
341	Sacrificial carbon strategy for facile fabrication of highly-dispersed cobalt-silicon nanocomposites: Insight into its performance on the CO and CH4 oxidation. Journal of Cleaner Production, 2021, 278, 123920.	4.6	6
342	Optical density inferences in aqueous solution with embedded micro/nano bubbles: A reminder for the emerging green bubble cleantech. Journal of Cleaner Production, 2021, 294, 126258.	4.6	6

#	Article	lF	CITATIONS
343	Research progress on the impact of flood discharge atomization on the ecological environment. Natural Hazards, 2021, 108, 1415-1426.	1.6	6
344	Insights into deep decline of As(III) leachability induced by As(III) partial oxidation during lime stabilization of As–Ca sludge. Journal of Hazardous Materials, 2022, 424, 127575.	6.5	6
345	An energy analysis of polylactic acid (PLA) produced from corn grain and corn stover integrated system., 2011,,.		5
346	New Editors-in-Chief's Message. Frontiers of Environmental Science and Engineering, 2015, 9, 1-1.	3.3	5
347	Application of silica-based monolith as solid-phase extraction sorbent for extracting toxaphene congeners in soil. Journal of Sol-Gel Science and Technology, 2016, 80, 87-95.	1.1	5
348	Effect of adding a smart potassium ion-responsive copolymer into polysulfone support membrane on the performance of thin-film composite nanofiltration membrane. Frontiers of Chemical Science and Engineering, 2019, 13, 400-414.	2.3	5
349	Hydrochemical composition, distribution, and sources of typical organic pollutants and metals in Lake Bangong Co, Tibet. Environmental Science and Pollution Research, 2021, 28, 9877-9888.	2.7	5
350	Degradation of Trimethoprim Using the UV/Free Chlorine Process: Influencing Factors and Optimal Operating Conditions. Water (Switzerland), 2021, 13, 1656.	1.2	5
351	Combined Heat and Power May Conflict with Decarbonization Goals—Air Emissions of Natural Gas Combined Cycle Power versus Combined Heat and Power Systems for Commercial Buildings. Environmental Science & Technology, 2021, 55, 10645-10653.	4.6	5
352	Application of an Isothermal, Three-Phase Catalytic Reactor Model To Predict Unsteady-State Fixed-Bed Performance. Environmental Science & Environment	4.6	4
353	Water, energy, land use, transportation and socioeconomic nexus: A blue print for more sustainable urban systems. , 2011, , .		4
354	Determination of ¹⁶ O in Microcrystalline Carbon by Indirect Neutron Activation Analysis. Nuclear Applications and Technology, 1969, 7, 383-384.	0.3	3
355	A model for predicting contaminant removal by adsorption within the International Space Station water processor: 1. Multicomponent equilibrium modeling. Water Environment Research, 1998, 70, 14-26.	1.3	3
356	The impact of microturbines and PV systems of office buildings in energy-efficient, economical, and environmental aspects. , 2015 , , .		3
357	The Energy-Efficient, Economical, and Environmental Impacts of Microturbines on Residential Customers. , 2015, , .		3
358	An integrated framework for managing the complex interdependence between infrastructures and the socioeconomic environment: An application in metropolitan Atlanta. Urban Studies, 2017, 54, 2874-2893.	2,2	3
359	Key findings of the 2016 symposium on the frontiers of chemical science and engineering: Environment and sustainable development. Frontiers of Chemical Science and Engineering, 2017, 11, 305-307.	2.3	3
360	Dissolution and separation of non-metallic powder from printed circuit boards by using chloride solvent. Waste Management, 2021, 123, 60-68.	3.7	3

#	Article	IF	CITATIONS
361	Correction. Prediction of Multicomponent Adsorption Equilibria Using Ideal Adsorbed Solution Theory. Environmental Science & Eamp; Technology, 1986, 20, 840-840.	4.6	2
362	Holistic Framework for Sustainable and Resilient Design of Urban Energy and Water Infrastructure. Proceedings of the Water Environment Federation, 2010, 2010, 2138-2140.	0.0	2
363	Rapid determination of monopersulfate with bromide ion-catalyzed oxidation of 2,		