
## Tal Dagan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6722395/publications.pdf Version: 2024-02-01



TAL DACAN

| #  | Article                                                                                                                                                                                               | IF                 | CITATIONS            |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|
| 1  | Gene sharing among plasmids and chromosomes reveals barriers for antibiotic resistance gene<br>transfer. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200467. | 4.0                | 23                   |
| 2  | Denitrification in foraminifera has an ancient origin and is complemented by associated bacteria.<br>Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .    | 7.1                | 9                    |
| 3  | Pangenome Evolution in Environmentally Transmitted Symbionts of Deep-Sea Mussels Is Governed by<br>Vertical Inheritance. Genome Biology and Evolution, 2022, 14, .                                    | 2.5                | 5                    |
| 4  | Natural Competence in the Filamentous, Heterocystous Cyanobacterium <i>Chlorogloeopsis<br/>fritschii</i> PCC 6912. MSphere, 2022, 7, .                                                                | 2.9                | 1                    |
| 5  | Darwinian individuality of extrachromosomal genetic elements calls for population genetics tinkering. Environmental Microbiology Reports, 2021, 13, 22-26.                                            | 2.4                | 6                    |
| 6  | Two novel heteropolymerâ€forming proteins maintain the multicellular shape of the cyanobacterium<br><i>Anabaena</i> sp. PCC 7120. FEBS Journal, 2021, 288, 3197-3216.                                 | 4.7                | 7                    |
| 7  | Colonization dynamics of <i>Pantoea agglomerans</i> in the wheat root habitat. Environmental<br>Microbiology, 2021, 23, 2260-2273.                                                                    | 3.8                | 14                   |
| 8  | Essential gene acquisition destabilizes plasmid inheritance. PLoS Genetics, 2021, 17, e1009656.                                                                                                       | 3.5                | 19                   |
| 9  | Segregational Drift Constrains the Evolutionary Rate of Prokaryotic Plasmids. Molecular Biology and Evolution, 2021, 38, 5610-5624.                                                                   | 8.9                | 14                   |
| 10 | The Order of Trait Emergence in the Evolution of Cyanobacterial Multicellularity. Genome Biology and Evolution, 2021, 13, .                                                                           | 2.5                | 26                   |
| 11 | Antibiotics Interfere with the Evolution of Plasmid Stability. Current Biology, 2020, 30, 3841-3847.e4.                                                                                               | 3.9                | 37                   |
| 12 | Plasmid evolution. Current Biology, 2020, 30, R1158-R1163.                                                                                                                                            | 3.9                | 23                   |
| 13 | A novel septal protein of multicellular heterocystous cyanobacteria is associated with the divisome.<br>Molecular Microbiology, 2020, 113, 1140-1154.                                                 | 2.5                | 22                   |
| 14 | Discovery of multi-operon colinear syntenic blocks in microbial genomes. Bioinformatics, 2020, 36, i21-i29.                                                                                           | 4.1                | 15                   |
| 15 | Intracellular Competitions Reveal Determinants of Plasmid Evolutionary Success. Frontiers in Microbiology, 2020, 11, 2062.                                                                            | 3.5                | 13                   |
| 16 | Somatic genetic drift and multilevel selection in a clonal seagrass. Nature Ecology and Evolution, 2020, 4, 952-962.                                                                                  | 7.8                | 86                   |
| 17 | Identification and characterization of novel filament-forming proteins in cyanobacteria. Scientific<br>Reports, 2020, 10, 1894.                                                                       | 3.3                | 22                   |
| 18 | Seed-Derived Microbial Colonization of Wild Emmer and Domesticated Bread Wheat ( <i>Triticum) Tj ETQq0 0 C</i>                                                                                        | ) rgBT /Ove<br>4.1 | erlock 10 Tf 5<br>40 |

and Composition. MBio, 2020, 11, .

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Insertion and deletion evolution reflects antibiotics selection pressure in a Mycobacterium tuberculosis outbreak. PLoS Pathogens, 2020, 16, e1008357.                                                                                  | 4.7  | 22        |
| 20 | Rates of Molecular Evolution in a Marine Synechococcus Phage Lineage. Viruses, 2019, 11, 720.                                                                                                                                           | 3.3  | 12        |
| 21 | Interactions and Coadaptation in Plant Metaorganisms. Annual Review of Phytopathology, 2019, 57,<br>483-503.                                                                                                                            | 7.8  | 28        |
| 22 | Currency, Exchange, and Inheritance in the Evolution of Symbiosis. Trends in Microbiology, 2019, 27, 836-849.                                                                                                                           | 7.7  | 29        |
| 23 | Horizontally transmitted symbiont populations in deep-sea mussels are genetically isolated. ISME<br>Journal, 2019, 13, 2954-2968.                                                                                                       | 9.8  | 42        |
| 24 | Comparative analysis of amplicon and metagenomic sequencing methods reveals key features in the evolution of animal metaorganisms. Microbiome, 2019, 7, 133.                                                                            | 11.1 | 141       |
| 25 | Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nature<br>Communications, 2019, 10, 2595.                                                                                                | 12.8 | 141       |
| 26 | Evolthon: A community endeavor to evolve lab evolution. PLoS Biology, 2019, 17, e3000182.                                                                                                                                               | 5.6  | 10        |
| 27 | Metabolic preference of nitrate over oxygen as an electron acceptor in foraminifera from the<br>Peruvian oxygen minimum zone. Proceedings of the National Academy of Sciences of the United States<br>of America, 2019, 116, 2860-2865. | 7.1  | 73        |
| 28 | The effect of population bottleneck size and selective regime on genetic diversity and evolvability in bacteria. Genome Biology and Evolution, 2019, 11, 3283-3290.                                                                     | 2.5  | 27        |
| 29 | Quantification of Plasmid-Mediated Antibiotic Resistance in an Experimental Evolution Approach.<br>Journal of Visualized Experiments, 2019, , .                                                                                         | 0.3  | 3         |
| 30 | CSBFinder: discovery of colinear syntenic blocks across thousands of prokaryotic genomes.<br>Bioinformatics, 2019, 35, 1634-1643.                                                                                                       | 4.1  | 11        |
| 31 | Segregational Drift and the Interplay between Plasmid Copy Number and Evolvability. Molecular<br>Biology and Evolution, 2019, 36, 472-486.                                                                                              | 8.9  | 46        |
| 32 | Rates of Mutation and Recombination in Siphoviridae Phage Genome Evolution over Three Decades.<br>Molecular Biology and Evolution, 2018, 35, 1147-1159.                                                                                 | 8.9  | 61        |
| 33 | Metaorganisms in extreme environments: do microbes play a role in organismal adaptation?. Zoology, 2018, 127, 1-19.                                                                                                                     | 1.2  | 194       |
| 34 | A Novel Eukaryotic Denitrification Pathway in Foraminifera. Current Biology, 2018, 28, 2536-2543.e5.                                                                                                                                    | 3.9  | 75        |
| 35 | Carrying Capacity and Colonization Dynamics of Curvibacter in the Hydra Host Habitat. Frontiers in<br>Microbiology, 2018, 9, 443.                                                                                                       | 3.5  | 39        |
| 36 | Recombination Signal in Mycobacterium tuberculosis Stems from Reference-guided Assemblies and Alignment Artefacts. Genome Biology and Evolution, 2018, 10, 1920-1926.                                                                   | 2.5  | 27        |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Expansion of the redox-sensitive proteome coincides with the plastid endosymbiosis. Nature Plants, 2017, 3, 17066.                                                                            | 9.3 | 26        |
| 38 | Phylogenetic rooting using minimal ancestor deviation. Nature Ecology and Evolution, 2017, 1, 193.                                                                                            | 7.8 | 152       |
| 39 | An evolutionary perspective on plasmid lifestyle modes. Current Opinion in Microbiology, 2017, 38,<br>74-80.                                                                                  | 5.1 | 113       |
| 40 | Phylogenomic networks reveal limited phylogenetic range of lateral gene transfer by transduction.<br>ISME Journal, 2017, 11, 543-554.                                                         | 9.8 | 81        |
| 41 | Evolution of Chaperonin Gene Duplication in Stigonematalean Cyanobacteria (Subsection V). Genome<br>Biology and Evolution, 2017, 9, evw287.                                                   | 2.5 | 13        |
| 42 | Plasticity first: molecular signatures of a complex morphological trait in filamentous cyanobacteria.<br>BMC Evolutionary Biology, 2017, 17, 209.                                             | 3.2 | 19        |
| 43 | DnaK-Dependent Accelerated Evolutionary Rate in Prokaryotes. Genome Biology and Evolution, 2016, 8, 1590-1599.                                                                                | 2.5 | 23        |
| 44 | Phylogenomic Networks of Microbial Genome Evolution. , 2015, , 4.1.1-1-4.1.1-18.                                                                                                              |     | 0         |
| 45 | The Contribution of Genetic Recombination to CRISPR Array Evolution. Genome Biology and Evolution, 2015, 7, 1925-1939.                                                                        | 2.5 | 31        |
| 46 | Integration of Two Ancestral Chaperone Systems into One: The Evolution of Eukaryotic Molecular<br>Chaperones in Light of Eukaryogenesis. Molecular Biology and Evolution, 2014, 31, 410-418.  | 8.9 | 17        |
| 47 | Application and comparative performance of network modularity algorithms to ecological communities classification. Acta Societatis Botanicorum Poloniae, 2014, 83, 93-102.                    | 0.8 | 2         |
| 48 | Genomes of Stigonematalean Cyanobacteria (Subsection V) and the Evolution of Oxygenic<br>Photosynthesis from Prokaryotes to Plastids. Genome Biology and Evolution, 2013, 5, 31-44.           | 2.5 | 234       |
| 49 | Cyanobacterial defense mechanisms against foreign DNA transfer and their impact on genetic engineering. Biological Research, 2013, 46, 373-382.                                               | 3.4 | 44        |
| 50 | The Genome of the Obligate Intracellular Parasite Trachipleistophora hominis: New Insights into<br>Microsporidian Genome Dynamics and Reductive Evolution. PLoS Pathogens, 2012, 8, e1002979. | 4.7 | 127       |
| 51 | An Evolutionary Network of Genes Present in the Eukaryote Common Ancestor Polls Genomes on Eukaryotic and Mitochondrial Origin. Genome Biology and Evolution, 2012, 4, 466-485.               | 2.5 | 119       |
| 52 | A Machine Learning Approach To Identify Hydrogenosomal Proteins in Trichomonas vaginalis.<br>Eukaryotic Cell, 2012, 11, 217-228.                                                              | 3.4 | 24        |
| 53 | Chaperones Divide Yeast Proteins into Classes of Expression Level and Evolutionary Rate. Genome<br>Biology and Evolution, 2012, 4, 618-625.                                                   | 2.5 | 22        |
| 54 | <i>Plasmodium falciparum</i> -encoded exported hsp70/hsp40 chaperone/co-chaperone complexes<br>within the host erythrocyte. Cellular Microbiology, 2012, 14, 1784-1795.                       | 2.1 | 137       |

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Cumulative Impact of Chaperone-Mediated Folding on Genome Evolution. Biochemistry, 2012, 51, 9941-9953.                                                                                                                                                  | 2.5  | 52        |
| 56 | Transformation and Conjugal Transfer of Foreign Genes into the Filamentous Multicellular<br>Cyanobacteria (Subsection V) Fischerella and Chlorogloeopsis. Current Microbiology, 2012, 65,<br>552-560.                                                    | 2.2  | 43        |
| 57 | Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of<br>Haloarchaea. Proceedings of the National Academy of Sciences of the United States of America, 2012,<br>109, 20537-20542.                             | 7.1  | 211       |
| 58 | Transcriptomic Evidence That Longevity of Acquired Plastids in the Photosynthetic Slugs Elysia timida<br>and Plakobranchus ocellatus Does Not Entail Lateral Transfer of Algal Nuclear Genes. Molecular<br>Biology and Evolution, 2011, 28, 699-706.     | 8.9  | 119       |
| 59 | Trends and barriers to lateral gene transfer in prokaryotes. Current Opinion in Microbiology, 2011, 14, 615-623.                                                                                                                                         | 5.1  | 214       |
| 60 | Phylogenomic networks. Trends in Microbiology, 2011, 19, 483-491.                                                                                                                                                                                        | 7.7  | 66        |
| 61 | Red and Problematic Green Phylogenetic Signals among Thousands of Nuclear Genes from the<br>Photosynthetic and Apicomplexa-Related Chromera velia. Genome Biology and Evolution, 2011, 3,<br>1220-1230.                                                  | 2.5  | 75        |
| 62 | Networks uncover hidden lexical borrowing in Indo-European language evolution. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1794-1803.                                                                                            | 2.6  | 63        |
| 63 | Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Research, 2011, 21, 599-609.                                                                                                        | 5.5  | 215       |
| 64 | Networks of Gene Sharing among 329 Proteobacterial Genomes Reveal Differences in Lateral Gene<br>Transfer Frequency at Different Phylogenetic Depths. Molecular Biology and Evolution, 2011, 28,<br>1057-1074.                                           | 8.9  | 147       |
| 65 | Chaperonin-Dependent Accelerated Substitution Rates in Prokaryotes. Genome Biology and Evolution, 2010, 2, 602-608.                                                                                                                                      | 2.5  | 48        |
| 66 | Genome Networks Root the Tree of Life between Prokaryotic Domains. Genome Biology and Evolution, 2010, 2, 379-392.                                                                                                                                       | 2.5  | 80        |
| 67 | Evolution of spliceosomal introns following endosymbiotic gene transfer. BMC Evolutionary<br>Biology, 2010, 10, 57.                                                                                                                                      | 3.2  | 23        |
| 68 | Seeing Green and Red in Diatom Genomes. Science, 2009, 324, 1651-1652.                                                                                                                                                                                   | 12.6 | 26        |
| 69 | Getting a better picture of microbial evolution en route to a network of genomes. Philosophical<br>Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2187-2196.                                                                       | 4.0  | 71        |
| 70 | A Machine-Learning Approach Reveals That Alignment Properties Alone Can Accurately Predict<br>Inference of Lateral Gene Transfer from Discordant Phylogenies. Molecular Biology and Evolution,<br>2009, 26, 1931-1939.                                   | 8.9  | 11        |
| 71 | A Proteomic Survey of Chlamydomonas reinhardtii Mitochondria Sheds New Light on the Metabolic<br>Plasticity of the Organelle and on the Nature of the Â-Proteobacterial Mitochondrial Ancestor.<br>Molecular Biology and Evolution, 2009, 26, 1533-1548. | 8.9  | 172       |
| 72 | Prokaryotic evolution and the tree of life are two different things. Biology Direct, 2009, 4, 34.                                                                                                                                                        | 4.6  | 188       |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution.<br>Proceedings of the National Academy of Sciences of the United States of America, 2008, 105,<br>10039-10044.                            | 7.1  | 366       |
| 74 | Genes of Cyanobacterial Origin in Plant Nuclear Genomes Point to a Heterocyst-Forming Plastid<br>Ancestor. Molecular Biology and Evolution, 2008, 25, 748-761.                                                                       | 8.9  | 197       |
| 75 | Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote<br>evolution. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104,<br>870-875.                     | 7.1  | 186       |
| 76 | Evolutionary Dynamics of Introns in Plastid-Derived Genes in Plants: Saturation Nearly Reached but<br>Slow Intron Gain Continues. Molecular Biology and Evolution, 2007, 25, 111-119.                                                | 8.9  | 27        |
| 77 | The Evolution of Eukaryotes. Science, 2007, 316, 542c-543c.                                                                                                                                                                          | 12.6 | 24        |
| 78 | The origin of mitochondria in light of a fluid prokaryotic chromosome model. Biology Letters, 2007, 3, 180-184.                                                                                                                      | 2.3  | 86        |
| 79 | Genome history in the symbiotic hybrid Euglena gracilis. Gene, 2007, 402, 35-39.                                                                                                                                                     | 2.2  | 43        |
| 80 | Testing hypotheses without considering predictions. BioEssays, 2007, 29, 500-503.                                                                                                                                                    | 2.5  | 16        |
| 81 | The tree of one percent. Genome Biology, 2006, 7, 118.                                                                                                                                                                               | 9.6  | 313       |
| 82 | The "Domino Theory―of Gene Death: Gradual and Mass Gene Extinction Events in Three Lineages of<br>Obligate Symbiotic Bacterial Pathogens. Molecular Biology and Evolution, 2006, 23, 310-316.                                        | 8.9  | 70        |
| 83 | The Comparative Method Rules! Codon Volatility Cannot Detect Positive Darwinian Selection Using a<br>Single Genome Sequence. Molecular Biology and Evolution, 2005, 22, 496-500.                                                     | 8.9  | 14        |
| 84 | GC Composition of the Human Genome: In Search of Isochores. Molecular Biology and Evolution, 2005, 22, 1260-1272.                                                                                                                    | 8.9  | 71        |
| 85 | AluGene: a database of Alu elements incorporated within protein-coding genes. Nucleic Acids Research, 2004, 32, 489D-492.                                                                                                            | 14.5 | 64        |
| 86 | Minimal Conditions for Exonization of Intronic Sequences. Molecular Cell, 2004, 14, 221-231.                                                                                                                                         | 9.7  | 160       |
| 87 | pANT: A Method for the Pairwise Assessment of Nonfunctionalization Times of Processed<br>Pseudogenes. Molecular Biology and Evolution, 2003, 20, 1876-1880.                                                                          | 8.9  | 9         |
| 88 | Ratios of Radical to Conservative Amino Acid Replacement are Affected by Mutational and<br>Compositional Factors and May Not Be Indicative of Positive Darwinian Selection. Molecular Biology<br>and Evolution, 2002, 19, 1022-1025. | 8.9  | 110       |