Lars G Kamphuis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6722328/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome Sequence of the Pea Aphid Acyrthosiphon pisum. PLoS Biology, 2010, 8, e1000313.	5.6	913
2	A comprehensive draft genome sequence for lupin (<i>Lupinus angustifolius</i>), an emerging health food: insights into plant–microbe interactions and legume evolution. Plant Biotechnology Journal, 2017, 15, 318-330.	8.3	153
3	Comparative genomics and prediction of conditionally dispensable sequences in legume–infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors. BMC Genomics, 2016, 17, 191.	2.8	109
4	Quinolizidine Alkaloid Biosynthesis in Lupins and Prospects for Grain Quality Improvement. Frontiers in Plant Science, 2017, 8, 87.	3.6	89
5	Transcriptome sequencing of different narrowâ€leafed lupin tissue types provides a comprehensive uniâ€gene assembly and extensive geneâ€based molecular markers. Plant Biotechnology Journal, 2015, 13, 14-25.	8.3	70
6	SSR analysis of the Medicago truncatula SARDI core collection reveals substantial diversity and unusual genotype dispersal throughout the Mediterranean basin. Theoretical and Applied Genetics, 2006, 112, 977-983.	3.6	69
7	Development of genomic resources for the narrow-leafed lupin (Lupinus angustifolius): construction of a bacterial artificial chromosome (BAC) library and BAC-end sequencing. BMC Genomics, 2011, 12, 521.	2.8	53
8	INDEL variation in the regulatory region of the major flowering time gene <i>LanFTc1</i> is associated with vernalization response and flowering time in narrowâ€leafed lupin (<i>Lupinus angustifolius</i>) Tj ETQq0	0 0a.gBT /C)verlock 10 T
9	Agroinfection-based high-throughput screening reveals specific recognition of INF elicitins in Solanum. Molecular Plant Pathology, 2006, 7, 499-510.	4.2	50
10	Identification and characterization of resistance to cowpea aphid (Aphis craccivora Koch) in Medicago truncatula. BMC Plant Biology, 2012, 12, 101.	3.6	50
11	Exploring the genetic and adaptive diversity of a pan-Mediterranean crop wild relative: narrow-leafed lupin. Theoretical and Applied Genetics, 2018, 131, 887-901.	3.6	50
12	Analysis of conglutin seed storage proteins across lupin species using transcriptomic, protein and comparative genomic approaches. BMC Plant Biology, 2015, 15, 106.	3.6	49
13	The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress. PLoS ONE, 2015, 10, e0126978.	2.5	45
14	The essential role of genetic resources in narrow-leafed lupin improvement. Crop and Pasture Science, 2013, 64, 361.	1.5	44
15	The Medicago truncatula reference accession A17 has an aberrant chromosomal configuration. New Phytologist, 2007, 174, 299-303.	7.3	42
16	Plant–aphid interactions with a focus on legumes. Functional Plant Biology, 2013, 40, 1271.	2.1	40
17	Identification of potential early regulators of aphid resistance in <i>Medicago truncatula</i> via transcription factor expression profiling. New Phytologist, 2010, 186, 980-994.	7.3	36
18	Identification of distinct quantitative trait loci associated with defence against the closely related aphids Acyrthosiphon pisum and A. kondoi in Medicago truncatula. Journal of Experimental Botany, 2012, 63, 3913-3922.	4.8	36

Lars G Kamphuis

#	Article	IF	CITATIONS
19	A detailed in silico analysis of secondary metabolite biosynthesis clusters in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum. BMC Genomics, 2020, 21, 7.	2.8	36
20	Identification of Sources of Resistance to Phoma medicaginis Isolates in Medicago truncatula SARDI Core Collection Accessions, and Multigene Differentiation of Isolates. Phytopathology, 2006, 96, 1330-1336.	2.2	34
21	Two alternative recessive quantitative trait loci influence resistance to spring black stem and leaf spot in Medicago truncatula. BMC Plant Biology, 2008, 8, 30.	3.6	34
22	Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula. Journal of Experimental Botany, 2013, 64, 5157-5172.	4.8	33
23	Characterization of the genetic factors affecting quinolizidine alkaloid biosynthesis and its response to abiotic stress in narrowâ€leafed lupin (<scp><i>Lupinus angustifolius</i></scp> L.). Plant, Cell and Environment, 2018, 41, 2155-2168.	5.7	32
24	Partial stem resistance in <i>Brassica napus</i> to highly aggressive and genetically diverse <i>Sclerotinia sclerotiorum</i> isolates from Australia. Canadian Journal of Plant Pathology, 2018, 40, 551-561.	1.4	30
25	A cDNA-AFLP based strategy to identify transcripts associated with avirulence in Phytophthora infestans. Fungal Genetics and Biology, 2006, 43, 111-123.	2.1	29
26	A rapid method for profiling of volatile and semi-volatile phytohormones using methyl chloroformate derivatisation and GC–MS. Metabolomics, 2015, 11, 1922-1933.	3.0	26
27	Two independent resistance genes in the <i>Medicago truncatula</i> cultivar Jester confer resistance to two different aphid species of the genus <i>Acyrthosiphon</i> . Plant Signaling and Behavior, 2009, 4, 328-331.	2.4	25
28	<i>Phoma medicaginis</i> stimulates the induction of the octadecanoid and phenylpropanoid pathways in <i>Medicago truncatula</i> . Molecular Plant Pathology, 2012, 13, 593-603.	4.2	25
29	Characterization and mapping of LanrBo: a locus conferring anthracnose resistance in narrow-leafed lupin (Lupinus angustifolius L.). Theoretical and Applied Genetics, 2015, 128, 2121-2130.	3.6	25
30	A whole genome scan of SNP data suggests a lack of abundant hard selective sweeps in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum. PLoS ONE, 2019, 14, e0214201.	2.5	23
31	Identification and profiling of narrow-leafed lupin (Lupinus angustifolius) microRNAs during seed development. BMC Genomics, 2019, 20, 135.	2.8	22
32	The host generalist phytopathogenic fungus Sclerotinia sclerotiorum differentially expresses multiple metabolic enzymes on two different plant hosts. Scientific Reports, 2019, 9, 19966.	3.3	21
33	The Arabidopsis RNA Polymerase II Carboxyl Terminal Domain (CTD) Phosphatase-Like1 (CPL1) is a biotic stress susceptibility gene. Scientific Reports, 2018, 8, 13454.	3.3	18
34	Narrow-Leafed Lupin (Lupinus angustifolius) β1- and β6-Conglutin Proteins Exhibit Antifungal Activity, Protecting Plants against Necrotrophic Pathogen Induced Damage from Sclerotinia sclerotiorum and Phytophthora nicotianae. Frontiers in Plant Science, 2016, 7, 1856.	3.6	17
35	Identification of Novel Sources of Resistance to Ascochyta Blight in a Collection of Wild <i>Cicer</i> Accessions. Phytopathology, 2021, 111, 369-379.	2.2	17
36	Abiotic conditions governing the myceliogenic germination of Sclerotinia sclerotiorum allowing the basal infection of Brassica napus. Australasian Plant Pathology, 2019, 48, 85-91.	1.0	13

LARS G KAMPHUIS

#	Article	IF	CITATIONS
37	An RNAi supplemented diet as a reverse genetics tool to control bluegreen aphid, a major pest of legumes. Scientific Reports, 2020, 10, 1604.	3.3	13
38	Genetic Mapping of a Major Resistance Gene to Pea Aphid (Acyrthosipon pisum) in the Model Legume Medicago truncatula. International Journal of Molecular Sciences, 2016, 17, 1224.	4.1	11
39	The role of jasmonate signalling in quinolizidine alkaloid biosynthesis, wounding and aphid predation response in narrow-leafed lupin. Functional Plant Biology, 2019, 46, 443.	2.1	10
40	Analysis of differentially expressed Sclerotinia sclerotiorum genes during the interaction with moderately resistant and highly susceptible chickpea lines. BMC Genomics, 2021, 22, 333.	2.8	10
41	A Trimethylguanosine Synthase1-like (TGS1) homologue is implicated in vernalisation and flowering time control. Theoretical and Applied Genetics, 2021, 134, 3411-3426.	3.6	9
42	Identification of Brassica napus small RNAs responsive to infection by a necrotrophic pathogen. BMC Plant Biology, 2021, 21, 366.	3.6	9
43	A panâ€genome and chromosomeâ€length reference genome of narrowâ€leafed lupin (<i>Lupinus) Tj ETQq1 1 Journal, 0, , .</i>	0.784314 5.7	rgBT /Overl 9
44	Additive and epistatic interactions between AKR and AIN loci conferring bluegreen aphid resistance and hypersensitivity in Medicago truncatula. Journal of Experimental Botany, 2019, 70, 4887-4902.	4.8	8
45	Modeling first order additive × additive epistasis improves accuracy of genomic prediction for sclerotinia stem rot resistance in canola. Plant Genome, 2021, 14, e20088.	2.8	8
46	Ecophysiology and Phenology: Genetic Resources for Genetic/Genomic Improvement of Narrow-Leafed Lupin. Compendium of Plant Genomes, 2020, , 19-30.	0.5	6
47	Genomic resources for lupins are coming of age. , 2021, 3, e77.		5
48	The novel avirulence effector AlAvr1 from <i>Ascochyta lentis</i> mediates host cultivar specificity of ascochyta blight in lentil. Molecular Plant Pathology, 2022, , .	4.2	5
49	Identification of sources of Sclerotinia sclerotiorum resistance in a collection of wild Cicer germplasm. Plant Disease, 2021, 105, 2314-2324.	1.4	4
50	A functional genomics approach to dissect spotted alfalfa aphid resistance in Medicago truncatula. Scientific Reports, 2020, 10, 22159.	3.3	3
51	Ethylene Is Not Essential for R-Gene Mediated Resistance but Negatively Regulates Moderate Resistance to Some Aphids in Medicago truncatula. International Journal of Molecular Sciences, 2020, 21, 4657.	4.1	3
52	Transcriptome Resources Paving the Way for Lupin Crop Improvement. Compendium of Plant Genomes, 2020, , 53-71.	0.5	3
53	Genomic Applications and Resources to Dissect Flowering Time Control in Narrow-Leafed Lupin. Compendium of Plant Genomes, 2020, , 109-137.	0.5	2

 $_{54}$ Overview of Genomic Resources Available for Lupins with a Focus on Narrow-Leafed Lupin (Lupinus) Tj ETQq0 0 0 rg B_{55}^{T} /Overlock 10 Tf 5

#	Article	IF	CITATIONS
55	Identification of Sclerotinia stem rot resistance quantitative trait loci in a chickpea (Cicer arietinum) recombinant inbred line population. Functional Plant Biology, 2022, , .	2.1	1
56	A multiplex PCR marker distinguishes between a series of four LanFTc1 alleles regulating flowering time in narrowâ€leafed lupin (Lupinus angustifolius). Plant Breeding, 2021, 140, 1090-1101.	1.9	0