
## Qian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6721527/publications.pdf Version: 2024-02-01



ΟΙΔΝ ΖΗΔΝΟ

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science, 2020, 370, .                                                                                                        | 12.6 | 1,983     |
| 2  | Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science, 2020, 370, .                                                                                                      | 12.6 | 1,749     |
| 3  | 30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell, 2017, 168, 37-57.                                                                                                                 | 28.9 | 1,437     |
| 4  | Combined Immunodeficiency Associated with <i>DOCK8</i> Mutations. New England Journal of Medicine, 2009, 361, 2046-2055.                                                                                    | 27.0 | 655       |
| 5  | Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Science Immunology, 2021, 6, .                              | 11.9 | 357       |
| 6  | X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19.<br>Science Immunology, 2021, 6, .                                                                       | 11.9 | 267       |
| 7  | Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature, 2022, 603, 587-598.                                                                                                    | 27.8 | 216       |
| 8  | A Global Effort to Define the Human Genetics of Protective Immunity to SARS-CoV-2 Infection. Cell, 2020, 181, 1194-1199.                                                                                    | 28.9 | 185       |
| 9  | Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19. Science Translational Medicine, 2021, 13, eabh2624.                                             | 12.4 | 155       |
| 10 | DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. Journal of Experimental<br>Medicine, 2014, 211, 2549-2566.                                                                          | 8.5  | 150       |
| 11 | Tuberculosis and impaired IL-23–dependent IFN-γ immunity in humans homozygous for a common<br><i>TYK2</i> missense variant. Science Immunology, 2018, 3, .                                                  | 11.9 | 148       |
| 12 | Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. Journal of<br>Experimental Medicine, 2018, 215, 2567-2585.                                                                | 8.5  | 146       |
| 13 | Severe influenza pneumonitis in children with inherited TLR3 deficiency. Journal of Experimental<br>Medicine, 2019, 216, 2038-2056.                                                                         | 8.5  | 134       |
| 14 | Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine.<br>Journal of Experimental Medicine, 2021, 218, .                                                    | 8.5  | 130       |
| 15 | Inherited IFNAR1 deficiency in otherwise healthy patients with adverse reaction to measles and yellow fever live vaccines. Journal of Experimental Medicine, 2019, 216, 2057-2070.                          | 8.5  | 127       |
| 16 | Life-Threatening COVID-19: Defective Interferons Unleash Excessive Inflammation. Med, 2020, 1, 14-20.                                                                                                       | 4.4  | 110       |
| 17 | The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies.<br>Proceedings of the National Academy of Sciences of the United States of America, 2022, 119,<br>e2200413119. | 7.1  | 110       |
| 18 | SARS-CoV-2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4.<br>Journal of Experimental Medicine, 2021, 218, .                                                             | 8.5  | 107       |

QIAN ZHANG

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | DOCK8 is essential for Tâ€cell survival and the maintenance of CD8 <b><sup>+</sup></b> Tâ€cell memory.<br>European Journal of Immunology, 2011, 41, 3423-3435.                                                         | 2.9  | 105       |
| 20 | SARS-CoV-2–related MIS-C: A key to the viral and genetic causes of Kawasaki disease?. Journal of Experimental Medicine, 2021, 218, .                                                                                   | 8.5  | 100       |
| 21 | Somatic reversion in dedicator of cytokinesis 8 immunodeficiency modulates disease phenotype.<br>Journal of Allergy and Clinical Immunology, 2014, 133, 1667-1675.                                                     | 2.9  | 82        |
| 22 | DOCK8 deficiency. Annals of the New York Academy of Sciences, 2011, 1246, 26-33.                                                                                                                                       | 3.8  | 74        |
| 23 | Identification of driver genes for critical forms of COVID-19 in a deeply phenotyped young patient cohort. Science Translational Medicine, 2022, 14, eabj7521.                                                         | 12.4 | 71        |
| 24 | DOCK8 is critical for the survival and function of NKT cells. Blood, 2013, 122, 2052-2061.                                                                                                                             | 1.4  | 68        |
| 25 | Herpes simplex encephalitis in a patient with a distinctive form of inherited IFNAR1 deficiency. Journal of Clinical Investigation, 2021, 131, .                                                                       | 8.2  | 64        |
| 26 | Human NLRP1 is a sensor of pathogenic coronavirus 3CL proteases in lung epithelial cells. Molecular<br>Cell, 2022, 82, 2385-2400.e9.                                                                                   | 9.7  | 61        |
| 27 | Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. Journal of Experimental Medicine, 2022, 219, .                                                                                     | 8.5  | 59        |
| 28 | Human hyper-IgE syndrome: singular or plural?. Mammalian Genome, 2018, 29, 603-617.                                                                                                                                    | 2.2  | 55        |
| 29 | Dual Proteolytic Pathways Govern Glycolysis and Immune Competence. Cell, 2014, 159, 1578-1590.                                                                                                                         | 28.9 | 54        |
| 30 | A Cohort of 169 Chronic Granulomatous Disease Patients Exposed to BCG Vaccination: a Retrospective<br>Study from a Single Center in Shanghai, China (2004–2017). Journal of Clinical Immunology, 2018, 38,<br>260-272. | 3.8  | 52        |
| 31 | Genetic, clinical, and laboratory markers for DOCK8 immunodeficiency syndrome. Disease Markers, 2010, 29, 131-9.                                                                                                       | 1.3  | 51        |
| 32 | Life-Threatening Infections Due to Live-Attenuated Vaccines: Early Manifestations of Inborn Errors of<br>Immunity. Journal of Clinical Immunology, 2019, 39, 376-390.                                                  | 3.8  | 50        |
| 33 | Type I interferons and SARS-CoV-2: from cells to organisms. Current Opinion in Immunology, 2022, 74, 172-182.                                                                                                          | 5.5  | 49        |
| 34 | Severe COVID-19 in the young and healthy: monogenic inborn errors of immunity?. Nature Reviews<br>Immunology, 2020, 20, 455-456.                                                                                       | 22.7 | 47        |
| 35 | Human inborn errors of immunity to infection affecting cells other than leukocytes: from the immune system to the whole organism. Current Opinion in Immunology, 2019, 59, 88-100.                                     | 5.5  | 44        |
| 36 | Inherited IFNAR1 Deficiency in a Child with Both Critical COVID-19 Pneumonia and Multisystem<br>Inflammatory Syndrome. Journal of Clinical Immunology, 2022, 42, 471-483.                                              | 3.8  | 44        |

QIAN ZHANG

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A global effort to dissect the human genetic basis of resistance to SARS-CoV-2 infection. Nature<br>Immunology, 2022, 23, 159-164.                                                                                                        | 14.5 | 41        |
| 38 | Distinct antibody repertoires against endemic human coronaviruses in children and adults. JCI Insight, 2021, 6, .                                                                                                                         | 5.0  | 40        |
| 39 | Harnessing Type I IFN Immunity Against SARS-CoV-2 with Early Administration of IFN-β. Journal of Clinical Immunology, 2021, 41, 1425-1442.                                                                                                | 3.8  | 39        |
| 40 | Human genetics of life-threatening influenza pneumonitis. Human Genetics, 2020, 139, 941-948.                                                                                                                                             | 3.8  | 36        |
| 41 | Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs.<br>Science Immunology, 2023, 8, .                                                                                                   | 11.9 | 35        |
| 42 | Pathogenesis of infections in HIV-infected individuals: insights from primary immunodeficiencies.<br>Current Opinion in Immunology, 2017, 48, 122-133.                                                                                    | 5.5  | 34        |
| 43 | X-Linked TLR7 Deficiency Underlies Critical COVID-19 Pneumonia in a Male Patient with<br>Ataxia-Telangiectasia. Journal of Clinical Immunology, 2022, 42, 1-9.                                                                            | 3.8  | 34        |
| 44 | Hyperimmunoglobulin E syndromes in pediatrics. Current Opinion in Pediatrics, 2011, 23, 653-658.                                                                                                                                          | 2.0  | 33        |
| 45 | Negative selection on human genes underlying inborn errors depends on disease outcome and both<br>the mode and mechanism of inheritance. Proceedings of the National Academy of Sciences of the<br>United States of America, 2021, 118, . | 7.1  | 33        |
| 46 | Biochemically deleterious human <i>NFKB1</i> variants underlie an autosomal dominant form of common variable immunodeficiency. Journal of Experimental Medicine, 2021, 218, .                                                             | 8.5  | 32        |
| 47 | Recent Advances in DOCK8 Immunodeficiency Syndrome. Journal of Clinical Immunology, 2016, 36, 441-449.                                                                                                                                    | 3.8  | 31        |
| 48 | Human <i>STAT3</i> variants underlie autosomal dominant hyper-IgE syndrome by negative dominance.<br>Journal of Experimental Medicine, 2021, 218, .                                                                                       | 8.5  | 30        |
| 49 | A loss-of-function <i>IFNAR1</i> allele in Polynesia underlies severe viral diseases in homozygotes.<br>Journal of Experimental Medicine, 2022, 219, .                                                                                    | 8.5  | 28        |
| 50 | Monoclonal antibody-mediated neutralization of SARS-CoV-2 in an IRF9-deficient child. Proceedings of the United States of America, 2021, 118, .                                                                                           | 7.1  | 24        |
| 51 | Migration-induced cell shattering due to DOCK8 deficiency causes a type 2–biased helper T cell<br>response. Nature Immunology, 2020, 21, 1528-1539.                                                                                       | 14.5 | 21        |
| 52 | Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency. Journal of<br>Experimental Medicine, 2022, 219, .                                                                                                | 8.5  | 21        |
| 53 | A deep intronic splice mutation of <i>STAT3</i> underlies hyper IgE syndrome by negative dominance.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16463-16472.                           | 7.1  | 17        |
| 54 | Insufficient type I IFN immunity underlies life-threatening COVID-19 pneumonia. Comptes Rendus -<br>Biologies, 2021, 344, 19-25.                                                                                                          | 0.2  | 16        |

QIAN ZHANG

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Single-Cell and Bulk RNA-Sequencing Reveal Differences in Monocyte Susceptibility to Influenza A<br>Virus Infection Between Africans and Europeans. Frontiers in Immunology, 2021, 12, 768189.            | 4.8 | 14        |
| 56 | Association of rare predicted loss-of-function variants of influenza-related type I IFN genes with critical COVID-19 pneumonia. Journal of Clinical Investigation, 2021, 131, .                           | 8.2 | 12        |
| 57 | Human TET2 bridges cancer and immunity. Blood, 2020, 136, 1018-1019.                                                                                                                                      | 1.4 | 6         |
| 58 | A Novel STK4 Mutation Impairs T Cell Immunity Through Dysregulation of Cytokine-Induced Adhesion and Chemotaxis Genes. Journal of Clinical Immunology, 2021, 41, 1839-1852.                               | 3.8 | 3         |
| 59 | Immunoglobulin E—an Innocent Bystander in Host Defense?. Journal of Clinical Immunology, 2018, 38,<br>223-224.                                                                                            | 3.8 | 1         |
| 60 | Plasma Non-transferrin-Bound Iron Could Enter into Mice Duodenum and Negatively Affect Duodenal<br>Defense Response to Virus and Immune Responses. Biological Trace Element Research, 2023, 201, 786-799. | 3.5 | 1         |
| 61 | DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. Journal of Cell Biology, 2014, 207, 2075OIA223.                                                                                   | 5.2 | 0         |