Salih K Kafkas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6720111/publications.pdf

Version: 2024-02-01

279798 330143 1,734 90 23 37 citations h-index g-index papers 91 91 91 1446 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quality characteristics of strawberry genotypes at different maturation stages. Food Chemistry, 2007, 100, 1229-1236.	8.2	157
2	Morphological and molecular phylogeny of Pistacia species in Turkey. Theoretical and Applied Genetics, 2001, 102, 908-915.	3.6	83
3	Identification of sex-linked SNP markers using RAD sequencing suggests ZW/ZZ sex determination in Pistacia vera L BMC Genomics, 2015, 16, 98.	2.8	82
4	Genome survey of pistachio (Pistacia vera L.) by next generation sequencing: Development of novel SSR markers and genetic diversity in Pistacia species. BMC Genomics, 2016, 17, 998.	2.8	78
5	Detecting DNA Polymorphism and Genetic Diversity in a Wide Pistachio Germplasm: Comparison of AFLP, ISSR, and RAPD Markers. Journal of the American Society for Horticultural Science, 2006, 131, 522-529.	1.0	69
6	Phylogenetic analysis of the genus Pistacia by AFLP markers. Plant Systematics and Evolution, 2006, 262, 113-124.	0.9	66
7	Molecular Characterization of Mulberry Accessions in Turkey by AFLP Markers. Journal of the American Society for Horticultural Science, 2008, 133, 593-597.	1.0	61
8	DNA Polymorphism and Assessment of Genetic Relationships in Walnut Genotypes Based on AFLP and SAMPL Markers. Journal of the American Society for Horticultural Science, 2005, 130, 585-590.	1.0	47
9	Genetic diversity and relationships among Pistacia species and cultivars. Conservation Genetics, 2010, 11, 311-318.	1.5	40
10	Interspecific Relationships in Pistacia Based on RAPD Fingerprinting. Hortscience: A Publication of the American Society for Hortcultural Science, 2002, 37, 168-171.	1.0	38
11	Development and characterization of SSR markers from pistachio (Pistacia vera L.) and their transferability to eight Pistacia species. Scientia Horticulturae, 2015, 189, 94-103.	3.6	37
12	First simple sequence repeat-based genetic linkage map reveals a major QTL for leafing time in walnut (Juglans regia L.). Tree Genetics and Genomes, 2019, 15, 1.	1.6	36
13	Pistillate flower development and pollen tube growth mode during the delayed fertilization stage in Corylus heterophylla Fisch. Plant Reproduction, 2014, 27, 145-152.	2.2	35
14	Genetic diversity analysis based on ISSR, RAPD and SSR among Turkish Apricot Germplasms in Iran Caucasian eco-geographical group. Scientia Horticulturae, 2012, 138, 138-143.	3.6	34
15	Morphological diversity and a germplasm survey of three wild Pistacia species in Turkey. Genetic Resources and Crop Evolution, 2002, 49, 261-270.	1.6	33
16	Advances in Rootstock Breeding of Nut Trees: Objectives and Strategies. Plants, 2021, 10, 2234.	3.5	30
17	Estimating Genetic Diversity in Durum and Bread Wheat Cultivars from Turkey using AFLP and SAMPL Markers. Plant Breeding, 2008, 127, 9-14.	1.9	29
18	Genetic Relatedness in Prunus Genus Revealed by Inter-simple Sequence Repeat Markers. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 293-297.	1.0	29

#	Article	IF	CITATIONS
19	Ampelographic and molecular diversity among grapevine (Vitis spp.) cultivars. Czech Journal of Genetics and Plant Breeding, 2009, 45, 160-168.	0.8	27
20	Chromosome numbers of four Pistacia <i>(Anacardiaceae) </i>) species. Journal of Horticultural Science and Biotechnology, 2003, 78, 35-38.	1.9	26
21	Genetic characterization of pomegranate (Punica granatum L.) genotypes by AFLP markers. Biological Research, 2011, 44, 345-350.	3.4	26
22	Characterization of hawthorn (Crataegus spp.) genotypes by SSR markers. Physiology and Molecular Biology of Plants, 2018, 24, 1221-1230.	3.1	26
23	Determination of Aroma Compounds in Blackberry by GC/MS Analysis. Chemistry of Natural Compounds, 2003, 39, 174-176.	0.8	25
24	Various Mycorrhizal Fungi Enhance Dry Weights, P and Zn Uptake of FourPistaciaSpecies. Journal of Plant Nutrition, 2009, 32, 146-159.	1.9	25
25	Genetic relationships among Pistacia species studied by SAMPL markers. Plant Systematics and Evolution, 2011, 297, 207-212.	0.9	24
26	Genetic Characterization of Hazelnut (Corylus avellana L.) Cultivars from Turkey Using Molecular Markers. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 1557-1561.	1.0	24
27	Genetic relationships among Pistacia species using AFLP markers. Plant Systematics and Evolution, 2009, 279, 21-28.	0.9	23
28	Assessment and characterization of genetic relationships of walnut (Juglans regia L.) genotypes by three types of molecular markers. Scientia Horticulturae, 2014, 168, 81-87.	3.6	23
29	Development of 185 polymorphic simple sequence repeat (SSR) markers from walnut (Juglans regia L.). Scientia Horticulturae, 2015, 194, 160-167.	3.6	23
30	In silico polymorphic novel SSR marker development and the first SSR-based genetic linkage map in pistachio. Tree Genetics and Genomes, 2018, 14, 1.	1.6	23
31	Genetic Diversity among Some Walnut (Juglans regia L.) Genotypes by SSR Markers. Sustainability, 2021, 13, 6830.	3.2	23
32	Genetic relationships among South-East Turkey wild barley populations and sampling strategies of Hordeum spontaneum. Theoretical and Applied Genetics, 2005, 112, 12-20.	3.6	22
33	Characterization of quince (Cydonia oblonga Mill.) accessions by simple sequence repeat markers. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2019, 43, 69-79.	2.1	22
34	First genetic linkage map in pistachio constructed using an interspecific cross between Pistacia vera L. and monoecious Pistacia atlantica Desf Scientia Horticulturae, 2013, 151, 30-37.	3.6	21
35	Transcriptome Sequencing and Development of Novel Genic SSR Markers From Pistacia vera L Frontiers in Genetics, 2020, 11, 1021.	2.3	21
36	Molecular characterisation of Afghan pistachio accessions by amplified fragment length polymorphisms (AFLPs). Journal of Horticultural Science and Biotechnology, 2006, 81, 864-868.	1.9	20

#	Article	IF	CITATIONS
37	Novel microsatellite markers in Pistacia vera L. and their transferability across the genus Pistacia. Scientia Horticulturae, 2016, 198, 91-97.	3.6	20
38	Novel 307 polymorphic SSR markers from BAC-end sequences in walnut (Juglans regia L.): Effects of motif types and repeat lengths on polymorphism and genetic diversity. Scientia Horticulturae, 2016, 213, 1-4.	3.6	20
39	UNUSUAL PISTACIA ATLANTICA DESF. (ANACARDIACEAE) MONOECIOUS SEX TYPE IN THE YUNT MOUNTAINS OF THE MANISA PROVINCE OF TURKEY. Israel Journal of Plant Sciences, 2000, 48, 277-280.	0.5	19
40	Fat, Fatty Acids and Tocopherol Content of Several Walnut Genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 45, 437-441.	1.1	18
41	Sugar, Invertase Enzyme Activities and Invertase Gene Expression in Different Developmental Stages of Strawberry Fruits. Plants, 2022, 11, 509.	3.5	18
42	Molecular Characterization of Plum Cultivars by AFLP Markers. Biotechnology and Biotechnological Equipment, 2009, 23, 1189-1193.	1.3	17
43	Development and linkage mapping of novel sex-linked markers for marker-assisted cultivar breeding in pistachio (Pistacia vera L.). Molecular Breeding, 2017, 37, 1.	2.1	17
44	Major QTL with pleiotropic effects controlling time of leaf budburst and flowering-related traits in walnut (Juglans regia L.). Scientific Reports, 2020, 10, 15207.	3.3	14
45	Molecular characterization of mulberry (<i>Morus</i> spp.) genotypes via RAPD and ISSR. Journal of the Science of Food and Agriculture, 2012, 92, 1633-1637.	3.5	13
46	Polymorphism and Genetic Relationships among Tea Genotypes from Turkey Revealed by Amplified Fragment Length Polymorphism Markers. Journal of the American Society for Horticultural Science, 2009, 134, 428-434.	1.0	12
47	Highly polymorphic novel simple sequence repeat markers from Class I repeats in walnut (Juglansregia) Tj ETQq1	l 0.78431 2:1	4 rgBT /Ove
48	Role of endogenous polyamines in the alternate bearing phenomenon in pistachio. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2019, 43, 265-274.	2.1	10
49	VARIATION IN KERNEL CHLOROPHYLL CONTENT OF DIFFERENT PISTACHIO VARIETIES GROWN IN SIX COUNTRIES. Acta Horticulturae, 1998, , 372-377.	0.2	9
50	Evaluation of Some Phenological and Biochemical Characteristics of Selected New Late Flowering Dried Apricot Cultivars. Biochemical Genetics, 2017, 55, 234-243.	1.7	9
51	EFFECT OF COLD STORAGE ON THE KERNEL FATTY ACID COMPOSITION OF ALMONDS. Acta Horticulturae, 1998, , 349-358.	0.2	7
52	Pistachio., 2012,, 803-826.		7
53	Morphological diversity of the Turkish apricot (Prunus armeniaca L.) germplasm in the Irano-Caucasian ecogeographical group. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 0, , .	2.1	7
54	S_allele identification and genetic diversity analysis of apricot cultivars. Journal of Horticultural Science and Biotechnology, 2017, 92, 251-260.	1.9	6

#	Article	IF	Citations
55	Association mapping of several nut characters in walnut (Juglansregia L.). Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2020, 44, 208-227.	2.1	6
56	Revealing genetic diversity and population structure in Pistachio (Pistacia vera L.) by SSR markers. Genetic Resources and Crop Evolution, 2022, 69, 2875-2887.	1.6	6
57	Identification of strawberry (<i>Fragaria</i> × <i>ananassa</i> â€~Rubygem') volatiles using various SPME fibres by GC/MS. Acta Horticulturae, 2017, , 689-694.	0.2	5
58	SSR-based genetic linkage map construction in pistachio using an interspecific F1 population and QTL analysis for leaf and shoot traits. Molecular Breeding, 2018, 38, 1.	2.1	5
59	Genetic Diversity and Relationships of Terebinth (Pistacia terebinthus L.) Genotypes Growing Wild in Turkey. Agronomy, 2021, 11, 671.	3.0	5
60	Quantitative trait loci analysis for flowerâ€related traits in almond (<scp> <i>Prunus dulcis</i> </scp>) Tj ETQqC	0 0 orgBT	/Oyerlock 10
61	THE EFFECTS OF SCARIFICATION, STRATIFICATION AND GA3 TREATMENTS ON THE GERMINATION OF SEEDS AND SEEDLING GROWTH IN SELECTED P. KHINJUK TYPES. Acta Horticulturae, 1998, , 454-459.	0.2	4
62	Analysis of the fatty oil of Pistacia eurycarpa nuts by gas chromatography/mass spectrometry. Chemistry of Natural Compounds, 2007, 43, 313-314.	0.8	4
63	DEVELOPING OF MONOECIOUS PISTACHIO (P.VERA L.) POPULATIONS AND THE SEX DETERMINATION MECHANISM IN PISTACIA BY CROSSBREEDING. Acta Horticulturae, 2002, , 285-289.	0.2	4
64	COMPARISON OF YIELD AND QUALITY OF STRAWBERRY CULTIVARS USING FRIGO PLANTS AND FRESH RUNNERS ROOTED IN POTS (1993–94 GROWING SEASON). Acta Horticulturae, 1997, , 537-542.	0.2	4
65	Identification of the profile of endogenous cytokinin-like compounds during different plant growth stages and their effects on flower bud abscission in pistachio (Pistacia vera L.). Folia Horticulturae, 2020, 32, 21-35.	1.8	4
66	INTERACTIONS BETWEEN PISTACHIO ROOTSTOCK AND CULTIVAR IN K. MARAS/TURKEY -PRELIMINARY RESULTS. Acta Horticulturae, 2002, , 67-71.	0.2	3
67	A NEW ALMOND BREEDING PROGRAM IN TURKEY. Acta Horticulturae, 2013, , 63-68.	0.2	3
68	First microsatellite markers for Scaligeria lazica Boiss. (Apiaceae) by next-generation sequencing: population structure and genetic diversity analysis. Biotechnology and Biotechnological Equipment, 2017, 31, 535-543.	1.3	3
69	Changes in endogenous auxin level during flower bud abscission process in Pistachio (Pistacia vera) Tj ETQq $1\ 1\ C$).784314 r	gBJT /Overloc
70	Determination of fatty acid and tocopherol contents in Chandler × Kaplan-86 F1 walnut population. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2020, 45, 434-453.	2.1	3
71	PISTACHIO ROOTSTOCK BREEDING BY CROSSING DIFFERENT WILD SPECIES GROWN IN TURKEY. Acta Horticulturae, 1998, , 219-225.	0.2	3
72	MOLECULAR CHARACTERIZATION OF P. PALAESTINA AS A VARIETY OF P. TEREBINTHUS. Acta Horticulturae, 2002, , 291-295.	0.2	2

#	Article	IF	CITATIONS
73	Construction of dense genetic linkage maps of apple cultivars Kaşel-41and Williams' Pride by simple sequence repeat markers. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2015, 39, 967-975.	2.1	2
74	Characterization of strawberry cultivars by SSR and CAPS markers. Acta Horticulturae, 2017, , 171-178.	0.2	2
75	Genetic stability of â€~Festival' and â€~Rubigem' cultivars in different subcultures by SSR markers. Acta Horticulturae, 2017, , 877-882.	0.2	2
76	Profile of Semiquinone Radicals, Phytohormones and Sugars in Pistacia vera L. cv. Kirmizi Development. Agronomy, 2021, 11, 2115.	3.0	2
77	Molecular Characterization of Almond Cultivars Using Simple Sequence Repeat Markers. Erwerbs-Obstbau, 0, , 1.	1.3	2
78	Inter- and intra-specific nursery characterization of three wildPistaciaspecies. Journal of Horticultural Science and Biotechnology, 2002, 77, 164-169.	1.9	1
79	DETERMINATION OF GROWTH, BEARING, YIELD AND SOME QUALITY CHARACTERISTICS OF PISTACHIO CULTIVARS GRAFTED ON DIFFERENT ROOTSTOCKS UNDER IRRIGATED CONDITIONS. Acta Horticulturae, 2011, , 289-294.	0.2	1
80	Volatile Compounds of New Promising Dried Apricot (<i>Prunus armeniaca</i> L.) Genotypes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2016, 44, 568-572.	1.1	1
81	Aroma profiles of organically grown â€~Benicia' and â€~Albion' strawberries. Acta Horticulturae, 2017, , 703-708.	0.2	1
82	Preliminary results on the polyphenol content of strawberry (Fragaria×ananassaDuch. â€~Florida) Tj ETQq0 0 0 0	rgBT/Over	rlock 10 Tf 50
83	SSR Markers in the Genus Pistacia. , 2020, , .		1
84	Characterization of Some Fruit Quality Traits on Apple â€~KaÅŸel-41'â€~× â€~Williams Pride' F1 Pop Erwerbs-Obstbau, 2021, 63, 293-302.	oulation.	1
85	THE PERFORMANCE OF SOME STRAWBERRY CULTIVARS GROWN UNDER HIGH TUNNELS IN THE CLIMATIC CONDITION OF ADANA (TURKEY). Acta Horticulturae, 1997, , 297-300.	0.2	1
86	SELECTION OF P. ATLANTICA TYPES AS ROOTSTOCKS FOR P. VERA. Acta Horticulturae, 1998, , 226-230.	0.2	0
87	Inheritance of S-genotypes in Paviot \tilde{A} — Kabaasi apricot F ₁ progenies. Biotechnology and Biotechnological Equipment, 2016, 30, 894-898.	1.3	0
88	Fruit quality characteristics of organically grown strawberries. Acta Horticulturae, 2017, , 519-526.	0.2	0
89	TABLE APRICOT GROWING ON TAURUS MOUNTAINS. Acta Horticulturae, 1999, , 125-128.	0.2	0
90	Evaluation of Genetic Structure of Pistachio Through Whole Genome Resequencing. International Journal of Agriculture Environment and Food Sciences, 0, , 135-140.	0.6	0