Christopher A Maher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6719199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of Long Noncoding RNA <i>NXTAR</i> in Prostate Cancer Augments Androgen Receptor Expression and Enzalutamide Resistance. Cancer Research, 2022, 82, 155-168.	0.9	29
2	DANSR: A Tool for the Detection of Annotated and Novel Small RNAs. Non-coding RNA, 2022, 8, 9.	2.6	0
3	LINC00355 regulates p27KIP expression by binding to MENIN to induce proliferation in late-stage relapse breast cancer. Npj Breast Cancer, 2022, 8, 49.	5.2	4
4	ctDNA MRD Detection and Personalized Oncogenomic Analysis in Oligometastatic Colorectal Cancer From Plasma and Urine. JCO Precision Oncology, 2021, 5, 378-388.	3.0	26
5	Targeted Therapy to $\hat{1}^2$ 3 Integrin Reduces Chemoresistance in Breast Cancer Bone Metastases. Molecular Cancer Therapeutics, 2021, 20, 1183-1198.	4.1	13
6	Long, Noncoding RNA Dysregulation in Glioblastoma. Cancers, 2021, 13, 1604.	3.7	18
7	Long noncoding RNAs in cancer metastasis. Nature Reviews Cancer, 2021, 21, 446-460.	28.4	342
8	A community challenge to evaluate RNA-seq, fusion detection, and isoform quantification methods for cancer discovery. Cell Systems, 2021, 12, 827-838.e5.	6.2	15
9	Sclerosing epithelioid mesenchymal neoplasm of the pancreas–Âa proposed new entity. Modern Pathology, 2020, 33, 456-467.	5.5	10
10	SV-HotSpot: detection and visualization of hotspots targeted by structural variants associated with gene expression. Scientific Reports, 2020, 10, 15890.	3.3	3
11	The DNA methylation landscape of advanced prostate cancer. Nature Genetics, 2020, 52, 778-789.	21.4	198
12	Pan-cancer proteogenomic analysis reveals long and circular noncoding RNAs encoding peptides. NAR Cancer, 2020, 2, zcaa015.	3.1	18
13	Long non-coding RNA RAMS11 promotes metastatic colorectal cancer progression. Nature Communications, 2020, 11, 2156.	12.8	83
14	The clonal evolution of metastatic colorectal cancer. Science Advances, 2020, 6, eaay9691.	10.3	41
15	Cell-Free DNA Alterations in the <i>AR</i> Enhancer and Locus Predict Resistance to AR-Directed Therapy in Patients With Metastatic Prostate Cancer. JCO Precision Oncology, 2020, 4, 680-713.	3.0	20
16	Long non-coding RNA LCAL62 / LINC00261 is associated with lung adenocarcinoma prognosis. Heliyon, 2020, 6, e03521.	3.2	13
17	Heparin-based hydrogel scaffolding alters the transcriptomic profile and increases the chemoresistance of MDA-MB-231 triple-negative breast cancer cells. Biomaterials Science, 2020, 8, 2786-2796.	5.4	15
18	The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution, Cell, 2020, 181, 236-249.	28.9	334

ChristopherÂA Maher

#	Article	IF	CITATIONS
19	Diverse <i>AR</i> Gene Rearrangements Mediate Resistance to Androgen Receptor Inhibitors in Metastatic Prostate Cancer. Clinical Cancer Research, 2020, 26, 1965-1976.	7.0	55
20	Gene Fusion Discovery with INTEGRATE. Methods in Molecular Biology, 2020, 2079, 41-68.	0.9	2
21	Antibody profiling of patients with prostate cancer reveals differences in antibody signatures among disease stages. , 2020, 8, e001510.		9
22	Novel RB1-Loss Transcriptomic Signature Is Associated with Poor Clinical Outcomes across Cancer Types. Clinical Cancer Research, 2019, 25, 4290-4299.	7.0	38
23	Genomic Drivers of Poor Prognosis and Enzalutamide Resistance in Metastatic Castration-resistant Prostate Cancer. European Urology, 2019, 76, 562-571.	1.9	104
24	Clinical and Genomic Implications of Luminal and Basal Subtypes Across Carcinomas. Clinical Cancer Research, 2019, 25, 2450-2457.	7.0	52
25	Proteogenomic Analysis of Surgically Resected Lung Adenocarcinoma. Journal of Thoracic Oncology, 2018, 13, 1519-1529.	1.1	17
26	Functional Annotation of ESR1 Gene Fusions in Estrogen Receptor-Positive Breast Cancer. Cell Reports, 2018, 24, 1434-1444.e7.	6.4	73
27	Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell, 2018, 174, 758-769.e9.	28.9	459
28	INTEGRATE-neo: a pipeline for personalized gene fusion neoantigen discovery. Bioinformatics, 2017, 33, 555-557.	4.1	105
29	Comprehensive discovery of noncoding RNAs in acute myeloid leukemia cell transcriptomes. Experimental Hematology, 2017, 55, 19-33.	0.4	9
30	Genomic and transcriptomic heterogeneity in metaplastic carcinomas of the breast. Npj Breast Cancer, 2017, 3, 48.	5.2	63
31	Multi-institutional Analysis Shows that Low PCAT-14 Expression Associates with Poor Outcomes in Prostate Cancer. European Urology, 2017, 71, 257-266.	1.9	59
32	INTEGRATE-Vis: a tool for comprehensive gene fusion visualization. Scientific Reports, 2017, 7, 17808.	3.3	10
33	Increased breast tissue receptor activator of nuclear factor-ήB ligand (RANKL) gene expression is associated with higher mammographic density in premenopausal women. Oncotarget, 2017, 8, 73787-73792.	1.8	12
34	Visualizing tumor evolution with the fishplot package for R. BMC Genomics, 2016, 17, 880.	2.8	131
35	Comprehensive genomic analysis reveals FLT3 activation and a therapeutic strategy for a patient with relapsed adult B-lymphoblastic leukemia. Experimental Hematology, 2016, 44, 603-613.	0.4	44
36	An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer, Molecular and Cellular Proteomics, 2016, 15, 1060-1071	3.8	104

#	Article	IF	CITATIONS
37	INTEGRATE: gene fusion discovery using whole genome and transcriptome data. Genome Research, 2016, 26, 108-118.	5.5	120
38	Optimizing Cancer Genome Sequencing and Analysis. Cell Systems, 2015, 1, 210-223.	6.2	174
39	Genome Modeling System: A Knowledge Management Platform for Genomics. PLoS Computational Biology, 2015, 11, e1004274.	3.2	83
40	Pan-cancer transcriptome analysis reveals long noncoding RNAs with conserved function. RNA Biology, 2015, 12, 628-642.	3.1	85
41	Clonotyping for precision oncology. Drug Discovery Today, 2015, 20, 1464-1469.	6.4	3
42	SigFuge: single gene clustering of RNA-seq reveals differential isoform usage among cancer samples. Nucleic Acids Research, 2014, 42, e113-e113.	14.5	17
43	Transcriptome sequencing reveals altered long intergenic non-coding RNAs in lung cancer. Genome Biology, 2014, 15, 429.	8.8	179
44	cDNA Hybrid Capture Improves Transcriptome Analysis on Low-Input and Archived Samples. Journal of Molecular Diagnostics, 2014, 16, 440-451.	2.8	40
45	Loss of Trop2 causes ErbB3 activation through a neuregulin-1-dependent mechanism in the mesenchymal subtype of HNSCC. Oncotarget, 2014, 5, 9281-9294.	1.8	27
46	Endocrine-Therapy-Resistant ESR1 Variants Revealed by Genomic Characterization of Breast-Cancer-Derived Xenografts. Cell Reports, 2013, 4, 1116-1130.	6.4	539
47	Characterization of the EZH2-MMSET Histone Methyltransferase Regulatory Axis in Cancer. Molecular Cell, 2013, 49, 80-93.	9.7	130
48	Recurrent reciprocal RNA chimera involving YPEL5 and PPP1CB in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3035-3040.	7.1	44
49	Transcription Factors OVOL1 and OVOL2 Induce the Mesenchymal to Epithelial Transition in Human Cancer. PLoS ONE, 2013, 8, e76773.	2.5	229
50	A comprehensive promoter landscape identifies a novel promoter for CD133 in restricted tissues, cancers, and stem cells. Frontiers in Genetics, 2013, 4, 209.	2.3	10
51	Recurrent Rearrangements in Prostate Cancer: Causes and Therapeutic Potential. Current Drug Targets, 2013, 14, 450-459.	2.1	18
52	Next Generation Sequencing of Prostate Cancer from a Patient Identifies a Deficiency of Methylthioadenosine Phosphorylase, an Exploitable Tumor Target. Molecular Cancer Therapeutics, 2012, 11, 775-783.	4.1	34
53	Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature, 2012, 486, 353-360.	27.8	922
54	Genomic Landscape of Non-Small Cell Lung Cancer in Smokers and Never-Smokers. Cell, 2012, 150, 1121-1134.	28.9	1,038

ChristopherÂA Maher

#	Article	IF	CITATIONS
55	Chromothripsis and Human Disease: Piecing Together the Shattering Process. Cell, 2012, 148, 29-32.	28.9	141
56	Genetic and epigenetic loss of microRNA-31 leads to feed-forward expression of EZH2 in melanoma. Oncotarget, 2012, 3, 1011-1025.	1.8	126
57	Whole Genome Sequencing Reveals Novel Recurring Somatic Mutations Affecting HUWE1 and DIAPH2 Genes in Multiple Myeloma. Blood, 2012, 120, 320-320.	1.4	0
58	Common Gene Rearrangements in Prostate Cancer. Journal of Clinical Oncology, 2011, 29, 3659-3668.	1.6	268
59	Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nature Medicine, 2011, 17, 1646-1651.	30.7	301
60	Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nature Biotechnology, 2011, 29, 742-749.	17.5	950
61	Targeting of microRNA-142-3p in dendritic cells regulates endotoxin-induced mortality. Blood, 2011, 117, 6172-6183.	1.4	132
62	Mechanistic Rationale for Inhibition of Poly(ADP-Ribose) Polymerase in ETS Gene Fusion-Positive Prostate Cancer. Cancer Cell, 2011, 19, 664-678.	16.8	397
63	Coordinated Regulation of Polycomb Group Complexes through microRNAs in Cancer. Cancer Cell, 2011, 20, 187-199.	16.8	191
64	ChimeraScan: a tool for identifying chimeric transcription in sequencing data. Bioinformatics, 2011, 27, 2903-2904.	4.1	241
65	Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer. Genome Research, 2011, 21, 1028-1041.	5.5	166
66	A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial–mesenchymal transition. Journal of Cell Biology, 2011, 195, 417-433.	5.2	390
67	A Comparison of Single Molecule and Amplification Based Sequencing of Cancer Transcriptomes. PLoS ONE, 2011, 6, e17305.	2.5	48
68	Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nature Medicine, 2010, 16, 793-798.	30.7	436
69	A Genome-Wide Characterization of MicroRNA Genes in Maize. PLoS Genetics, 2009, 5, e1000716.	3.5	318
70	Chimeric transcript discovery by paired-end transcriptome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12353-12358.	7.1	302
71	Transcriptome sequencing to detect gene fusions in cancer. Nature, 2009, 458, 97-101.	27.8	791
72	The Sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457, 551-556.	27.8	2,642

#	Article	IF	CITATIONS
73	The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nature Genetics, 2009, 41, 553-562.	21.4	408
74	miR-24 Inhibits Cell Proliferation by Targeting E2F2, MYC, and Other Cell-Cycle Genes via Binding to "Seedless―3′UTR MicroRNA Recognition Elements. Molecular Cell, 2009, 35, 610-625.	9.7	544
75	Genomic Loss of microRNA-101 Leads to Overexpression of Histone Methyltransferase EZH2 in Cancer. Science, 2008, 322, 1695-1699.	12.6	995
76	Genome-wide analysis of cancer/testis gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20422-20427.	7.1	295
77	Cenome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4951-4956.	7.1	218
78	Evolution of Arabidopsis microRNA families through duplication events. Genome Research, 2006, 16, 510-519.	5.5	328
79	Creating genetic applications for informal science learning in multi-user virtual environments. Journal of Network and Computer Applications, 2002, 25, 295-308.	9.1	2