
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6718996/publications.pdf Version: 2024-02-01

ΙΟΗΝ Ν ΒΛΦΦ

#	Article	IF	CITATIONS
1	The Native Orthobunyavirus Ribonucleoprotein Possesses a Helical Architecture. MBio, 2022, 13, .	4.1	10
2	Development of a multiplex assay for antibody detection in serum against pathogens affecting ruminants. Transboundary and Emerging Diseases, 2021, 68, 1229-1239.	3.0	7
3	TMEM16A/ANO1 calcium-activated chloride channel as a novel target for the treatment of human respiratory syncytial virus infection. Thorax, 2021, 76, 64-72.	5.6	13
4	Ion Channels as Therapeutic Targets for Viral Infections: Further Discoveries and Future Perspectives. Viruses, 2020, 12, 844.	3.3	31
5	Hazara Nairovirus Requires COPI Components in both Arf1-Dependent and Arf1-Independent Stages of Its Replication Cycle. Journal of Virology, 2020, 94, .	3.4	5
6	Characterization and applications of a Crimean-Congo hemorrhagic fever virus nucleoprotein-specific Affimer: Inhibitory effects in viral replication and development of colorimetric diagnostic tests. PLoS Neglected Tropical Diseases, 2020, 14, e0008364.	3.0	4
7	Mutagenic Analysis of Hazara Nairovirus Nontranslated Regions during Single- and Multistep Growth Identifies both Attenuating and Functionally Critical Sequences for Virus Replication. Journal of Virology, 2020, 94, .	3.4	2
8	The RNA Replication Site of Tula Orthohantavirus Resides within a Remodelled Golgi Network. Cells, 2020, 9, 1569.	4.1	9
9	Quantification of Ebola virus replication kinetics in vitro. PLoS Computational Biology, 2020, 16, e1008375.	3.2	10
10	Development of a multiplex microsphere immunoassay for the detection of antibodies against highly pathogenic viruses in human and animal serum samples. PLoS Neglected Tropical Diseases, 2020, 14, e0008699.	3.0	3
11	Reply to Rameix-Welti, "No Incongruity in Respiratory Syncytial Virus M2-1 Protein Remaining Bound to Viral mRNAs during Their Entire Life Time― MBio, 2019, 10, .	4.1	0
12	Cellular cholesterol abundance regulates potassium accumulation within endosomes and is an important determinant in bunyavirus entry. Journal of Biological Chemistry, 2019, 294, 7335-7347.	3.4	25
13	Tula orthohantavirus nucleocapsid protein is cleaved in infected cells and may sequester activated caspase-3 during persistent infection to suppress apoptosis. Journal of General Virology, 2019, 100, 1208-1221.	2.9	5
14	Cellular cholesterol abundance regulates potassium accumulation within endosomes and is an important determinant in Bunyavirus entry. Access Microbiology, 2019, 1, .	0.5	0
15	The Structure of the Human Respiratory Syncytial Virus M2-1 Protein Bound to the Interaction Domain of the Phosphoprotein P Defines the Orientation of the Complex. MBio, 2018, 9, .	4.1	28
16	Host switching pathogens, infectious outbreaks and zoonosis: A Marie SkÅ,odowska-Curie innovative training network (HONOURs). Virus Research, 2018, 257, 120-124.	2.2	2
17	Potassium is a trigger for conformational change in the fusion spike of an enveloped RNA virus. Journal of Biological Chemistry, 2018, 293, 9937-9944.	3.4	34
18	Identification of a small molecule inhibitor of Ebola virus genome replication and transcription using in silico screening. Antiviral Research, 2018, 156, 46-54.	4.1	14

#	Article	IF	CITATIONS
19	Structure and Function of the Human Respiratory Syncytial Virus M2–1 Protein. Sub-Cellular Biochemistry, 2018, 88, 245-260.	2.4	4
20	Bunyavirus requirement for endosomal K+ reveals new roles of cellular ion channels during infection. PLoS Pathogens, 2018, 14, e1006845.	4.7	42
21	Viral dependence on cellular ion channels – an emerging anti-viral target?. Journal of General Virology, 2017, 98, 345-351.	2.9	54
22	Investigating the Influence of Ribavirin on Human Respiratory Syncytial Virus RNA Synthesis by Using a High-Resolution Transcriptome Sequencing Approach. Journal of Virology, 2016, 90, 4876-4888.	3.4	32
23	Heat Shock Protein 70 Family Members Interact with Crimean-Congo Hemorrhagic Fever Virus and Hazara Virus Nucleocapsid Proteins and Perform a Functional Role in the Nairovirus Replication Cycle. Journal of Virology, 2016, 90, 9305-9316.	3.4	36
24	Elucidation of the Cellular Interactome of Ebola Virus Nucleoprotein and Identification of Therapeutic Targets. Journal of Proteome Research, 2016, 15, 4290-4303.	3.7	43
25	Modulation of Potassium Channels Inhibits Bunyavirus Infection. Journal of Biological Chemistry, 2016, 291, 3411-3422.	3.4	45
26	The crystal structure of the Hazara virus nucleocapsid protein. BMC Structural Biology, 2015, 15, 24.	2.3	26
27	Proteomic analysis of mitochondria in respiratory epithelial cells infected with human respiratory syncytial virus and functional implications for virus and cell biology. Journal of Pharmacy and Pharmacology, 2015, 67, 300-318.	2.4	20
28	Interactome Analysis of the Human Respiratory Syncytial Virus RNA Polymerase Complex Identifies Protein Chaperones as Important Cofactors That Promote L-Protein Stability and RNA Synthesis. Journal of Virology, 2015, 89, 917-930.	3.4	65
29	Crystal structure of the essential transcription antiterminator M2-1 protein of human respiratory syncytial virus and implications of its phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1580-1585.	7.1	58
30	Elucidating variations in the nucleotide sequence of Ebola virus associated with increasing pathogenicity. Genome Biology, 2014, 15, 540.	8.8	44
31	Probing Bunyavirus N protein oligomerisation using mass spectrometry. Rapid Communications in Mass Spectrometry, 2014, 28, 793-800.	1.5	6
32	Elucidation of the Ebola Virus VP24 Cellular Interactome and Disruption of Virus Biology through Targeted Inhibition of Host-Cell Protein Function. Journal of Proteome Research, 2014, 13, 5120-5135.	3.7	79
33	The Asymmetric Structure of an Icosahedral Virus Bound to Its Receptor Suggests a Mechanism for Genome Release. Structure, 2013, 21, 1225-1234.	3.3	61
34	Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization. Nucleic Acids Research, 2013, 41, 5912-5926.	14.5	69
35	The Interactome of the Human Respiratory Syncytial Virus NS1 Protein Highlights Multiple Effects on Host Cell Biology. Journal of Virology, 2012, 86, 7777-7789.	3.4	61
36	Structure, Function, and Evolution of the Crimean-Congo Hemorrhagic Fever Virus Nucleocapsid Protein. Journal of Virology, 2012, 86, 10914-10923.	3.4	94

#	Article	lF	CITATIONS
37	Different NF-κB activation characteristics of human respiratory syncytial virus subgroups A and B. Microbial Pathogenesis, 2012, 52, 184-191.	2.9	8
38	A quantitative proteomic analysis of lung epithelial (A549) cells infected with 2009 pandemic influenza A virus using stable isotope labelling with amino acids in cell culture. Proteomics, 2012, 12, 1431-1436.	2.2	39
39	Using SILAC and quantitative proteomics to investigate the interactions between viral and host proteomes. Proteomics, 2012, 12, 666-672.	2.2	57
40	Recent advances in the molecular and cellular biology of bunyaviruses. Journal of General Virology, 2011, 92, 2467-2484.	2.9	165
41	Amino acid changes within the Bunyamwera virus nucleocapsid protein differentially affect the mRNA transcription and RNA replication activities of assembled ribonucleoprotein templates. Journal of General Virology, 2011, 92, 80-84.	2.9	30
42	The Molecular and Cellular Biology of Emerging Bunyaviruses. , 2011, , 261-294.		0
43	Characterization of the Interaction between Human Respiratory Syncytial Virus and the Cell Cycle in Continuous Cell Culture and Primary Human Airway Epithelial Cells. Journal of Virology, 2011, 85, 10300-10309.	3.4	30
44	Direct visualization of the small hydrophobic protein of human respiratory syncytial virus reveals the structural basis for membrane permeability. FEBS Letters, 2010, 584, 2786-2790.	2.8	56
45	Quantitative proteomic analysis of A549 cells infected with human respiratory syncytial virus subgroup B using SILAC coupled to LCâ€MS/MS. Proteomics, 2010, 10, 4320-4334.	2.2	45
46	Bunyamwera virus can repair both insertions and deletions during RNA replication. Rna, 2010, 16, 1138-1145.	3.5	9
47	Quantitative Proteomic Analysis of A549 Cells Infected with Human Respiratory Syncytial Virus. Molecular and Cellular Proteomics, 2010, 9, 2438-2459.	3.8	82
48	How RNA viruses maintain their genome integrity. Journal of General Virology, 2010, 91, 1373-1387.	2.9	70
49	Investigating the specificity and stoichiometry of RNA binding by the nucleocapsid protein of Bunyamwera virus. Rna, 2009, 15, 391-399.	3.5	25
50	Selection for gene junction sequences important for VSV transcription. Virology, 2008, 380, 379-387.	2.4	10
51	Bunyavirus mRNA synthesis is coupled to translation to prevent premature transcription termination. Rna, 2007, 13, 731-736.	3.5	49
52	Purification, crystallization and preliminary X-ray crystallographic analysis of the nucleocapsid protein of Bunyamwera virus. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 361-364.	0.7	9
53	Identification of the Bunyamwera bunyavirus transcription termination signal. Journal of General Virology, 2006, 87, 189-198.	2.9	31
54	Role of the Conserved Nucleotide Mismatch within 3′- and 5′-Terminal Regions of Bunyamwera Virus in Signaling Transcription. Journal of Virology, 2005, 79, 3586-3594.	3.4	49

#	Article	IF	CITATIONS
55	The Bunyamwera Virus mRNA Transcription Signal Resides within both the 3′ and the 5′ Terminal Regions and Allows Ambisense Transcription from a Model RNA Segment. Journal of Virology, 2005, 79, 12602-12607.	3.4	30
56	Bunyamwera Bunyavirus RNA Synthesis Requires Cooperation of 3′- and 5′-Terminal Sequences. Journal of Virology, 2004, 78, 1129-1138.	3.4	77
57	Segment-specific terminal sequences of Bunyamwera bunyavirus regulate genome replication. Virology, 2003, 311, 326-338.	2.4	69
58	Effects of a point mutation in the 3′ end of the S genome segment of naturally occurring and engineered Bunyamwera viruses. Journal of General Virology, 2003, 84, 789-793.	2.9	14
59	Identification of an Upstream Sequence Element Required for Vesicular Stomatitis Virus mRNA Transcription. Journal of Virology, 2002, 76, 7632-7641.	3.4	32
60	Transcriptional control of the RNA-dependent RNA polymerase of vesicular stomatitis virus. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1577, 337-353.	2.4	100
61	Polymerase Slippage at Vesicular Stomatitis Virus Gene Junctions To Generate Poly(A) Is Regulated by the Upstream 3′-AUAC-5′ Tetranucleotide: Implications for the Mechanism of Transcription Termination. Journal of Virology, 2001, 75, 6901-6913.	3.4	62
62	Identification of a Minimal Size Requirement for Termination of Vesicular Stomatitis Virus mRNA: Implications for the Mechanism of Transcription. Journal of Virology, 2000, 74, 8268-8276.	3.4	57
63	Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones Proceedings of the United States of America, 1995, 92, 8388-8392.	7.1	463
64	Characterisation of the interaction between the nucleoprotein and phosphoprotein of pneumonia virus of mice. Virus Research, 1995, 39, 221-235.	2.2	17