Yulong Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6717665/publications.pdf

Version: 2024-02-01

40 papers

2,987 citations

25 h-index

236925

289244 40 g-index

40 all docs

40 docs citations

times ranked

40

3269 citing authors

#	Article	IF	Citations
1	D14–SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504, 406-410.	27.8	669
2	A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nature Biotechnology, 2015, 33, 301-305.	17.5	299
3	<i><scp>FLOURY ENDOSPERM</scp>6</i> involved in compound granule formation and starch synthesis in rice endosperm. Plant Journal, 2014, 77, 917-930.	5.7	185
4	OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. Plant Journal, 2010, 64, 812-824.	5 . 7	123
5	Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. Journal of Experimental Botany, 2018, 69, 1051-1064.	4.8	119
6	The vacuolar processing enzyme OsVPE1 is required for efficient glutelin processing in rice. Plant Journal, 2009, 58, 606-617.	5.7	117
7	A Novel Chloroplast-Localized Pentatricopeptide Repeat Protein Involved in Splicing Affects Chloroplast Development and Abiotic Stress Response in Rice. Molecular Plant, 2014, 7, 1329-1349.	8.3	114
8	<i>GLUTELIN PRECURSOR ACCUMULATION3</i> Find the sum of Post-Golgi Vesicular Traffic Essential for Vacuolar Protein Sorting in Rice Endosperm Â. Plant Cell, 2014, 26, 410-425.	6.6	113
9	<i>FLOURY ENDOSPERM7</i> encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice. Journal of Experimental Botany, 2016, 67, 633-647.	4.8	91
10	Ubiquitin Specific Protease 15 Has an Important Role in Regulating Grain Width and Size in Rice. Plant Physiology, 2019, 180, 381-391.	4.8	90
11	The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice. Journal of Experimental Botany, 2012, 63, 121-130.	4.8	89
12	OsALMT7 Maintains Panicle Size and Grain Yield in Rice by Mediating Malate Transport. Plant Cell, 2018, 30, 889-906.	6.6	81
13	GOLGI TRANSPORT 1B Regulates Protein Export from the Endoplasmic Reticulum in Rice Endosperm Cells. Plant Cell, 2016, 28, 2850-2865.	6.6	79
14	WHITE STRIPE LEAF4 Encodes a Novel P-Type PPR Protein Required for Chloroplast Biogenesis during Early Leaf Development. Frontiers in Plant Science, 2017, 8, 1116.	3.6	71
15	An evolutionarily conserved gene, <i><scp>FUWA</scp></i> , plays a role in determining panicle architecture, grain shape and grain weight in rice. Plant Journal, 2015, 83, 427-438.	5.7	68
16	<i><scp>O</scp>s<scp>ARG</scp></i> encodes an arginase that plays critical roles in panicle development and grain production in rice. Plant Journal, 2013, 73, 190-200.	5.7	67
17	Rice <i><scp>FLOURY ENDOSPERM</scp>10</i> encodes a pentatricopeptide repeat protein that is essential for the <i>trans</i> â \le plicing of mitochondrial <i>nad1</i> intron 1 and endosperm development. New Phytologist, 2019, 223, 736-750.	7.3	62
18	<i>FLOURY ENDOSPERM16</i> important role in starch synthesis and seed development in rice. Plant Biotechnology Journal, 2019, 17, 1914-1927.	8.3	50

#	Article	IF	CITATIONS
19	OsVPS9A Functions Cooperatively with OsRAB5A to Regulate Post-Golgi Dense Vesicle-Mediated Storage Protein Trafficking to the Protein Storage Vacuole in Rice Endosperm Cells. Molecular Plant, 2013, 6, 1918-1932.	8.3	48
20	VLN2Regulates Plant Architecture by Affecting Microfilament Dynamics and Polar Auxin Transport in Rice. Plant Cell, 2015, 27, tpc.15.00581.	6.6	48
21	Disruption of gene <i><scp>SPL</scp>35</i> , encoding a novel <scp>CUE</scp> domainâ€containing protein, leads to cell death and enhanced disease response in rice. Plant Biotechnology Journal, 2019, 17, 1679-1693.	8.3	46
22	The APC/C ^{TE} E3 Ubiquitin Ligase Complex Mediates the Antagonistic Regulation of Root Growth and Tillering by ABA and GA. Plant Cell, 2020, 32, 1973-1987.	6.6	45
23	<i>GPA5</i> Encodes a Rab5a Effector Required for Post-Golgi Trafficking of Rice Storage Proteins. Plant Cell, 2020, 32, 758-777.	6.6	44
24	FLOURY SHRUNKEN ENDOSPERM1 Connects Phospholipid Metabolism and Amyloplast Development in Rice. Plant Physiology, 2018, 177, 698-712.	4.8	35
25	WSL3, a component of the plastid-encoded plastid RNA polymerase, is essential for early chloroplast development in rice. Plant Molecular Biology, 2016, 92, 581-595.	3.9	30
26	Rice FLOURY ENDOSPERM 18 encodes a pentatricopeptide repeat protein required for $5\hat{a} \in \mathbb{Z}^2$ processing of mitochondrial nad5 messenger RNA and endosperm development. Journal of Integrative Plant Biology, 2021, 63, 834-847.	8.5	24
27	<i>white panicle</i> 2 encoding thioredoxin <i>z</i> , regulates plastid RNA editing by interacting with multiple organellar RNA editing factors in rice. New Phytologist, 2021, 229, 2693-2706.	7.3	24
28	Early heading 7 interacts with DTH8, and regulates flowering time in rice. Plant Cell Reports, 2019, 38, 521-532.	5.6	22
29	FLOURY ENDOSPERM12 Encoding Alanine Aminotransferase 1 Regulates Carbon and Nitrogen Metabolism in Rice. Journal of Plant Biology, 2019, 62, 61-73.	2.1	22
30	OsNHX5-mediated pH homeostasis is required for post-Golgi trafficking of seed storage proteins in rice endosperm cells. BMC Plant Biology, 2019, 19, 295.	3.6	20
31	Plastidic pyruvate dehydrogenase complex E1 component subunit Alpha1 is involved in galactolipid biosynthesis required for amyloplast development in rice. Plant Biotechnology Journal, 2022, 20, 437-453.	8.3	20
32	Subunit E isoform 1 of vacuolar H+-ATPase OsVHA enables post-Golgi trafficking of rice seed storage proteins. Plant Physiology, 2021, 187, 2192-2208.	4.8	18
33	Post-Golgi trafficking of rice storage proteins requires the small GTPase Rab7 activation complex MON1–CCZ1. Plant Physiology, 2021, 187, 2174-2191.	4.8	17
34	Mitochondrion-targeted PENTATRICOPEPTIDE REPEAT5 is required for cis-splicing of nad4 intron 3 and endosperm development in rice. Crop Journal, 2021, 9, 282-296.	5.2	7
35	Rice <i>STOMATAL CYTOKINESIS DEFECTIVE2</i> regulates cell expansion by affecting vesicular trafficking in rice. Plant Physiology, 2022, 189, 567-584.	4.8	7
36	The small GTPase Rab5a and its guanine nucleotide exchange factors are involved in post-Golgi trafficking of storage proteins in developing soybean cotyledon. Journal of Experimental Botany, 2020, 71, 808-822.	4.8	6

YULONG REN

#	Article	IF	CITATION
37	ENLARGED STARCH GRAIN1 affects amyloplast development and starch biosynthesis in rice endosperm. Plant Science, 2021, 305, 110831.	3.6	6
38	Endomembraneâ€mediated storage protein trafficking in plants: Golgiâ€dependent or Golgiâ€independent?. FEBS Letters, 2022, 596, 2215-2230.	2.8	6
39	GmGPA3 is involved in post-Golgi trafficking of storage proteins and cell growth in soybean cotyledons. Plant Science, 2020, 294, 110423.	3.6	3
40	A putative plastidial adenine nucleotide transporter, BRITTLE1-3, plays an essential role in regulating chloroplast development in rice (Oryza sativa L.). Journal of Plant Biology, 2017, 60, 493-505.	2.1	2