
Marisa Gallardo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6717440/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey. Agricultural Water Management, 2007, 89, 261-274.	5.6	209
2	Global trends in nitrate leaching research in the 1960–2017 period. Science of the Total Environment, 2018, 643, 400-413.	8.0	159
3	Evapotranspiration of horticultural crops in an unheated plastic greenhouse. Agricultural Water Management, 2005, 72, 81-96.	5.6	149
4	Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors. Agricultural Water Management, 2007, 88, 147-158.	5.6	141
5	Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions. Agricultural Water Management, 2008, 95, 1041-1055.	5.6	140
6	Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrigation Science, 2010, 28, 497-509.	2.8	140
7	Proximal Optical Sensors for Nitrogen Management of Vegetable Crops: A Review. Sensors, 2018, 18, 2083.	3.8	136
8	Evaluation of optical sensor measurements of canopy reflectance and of leaf flavonols and chlorophyll contents to assess crop nitrogen status of muskmelon. European Journal of Agronomy, 2014, 58, 39-52.	4.1	103
9	Water relations, gas exchange and abscisic acid content ofLupinus cosentiniileaves in response to drying different proportions of the root system. Journal of Experimental Botany, 1994, 45, 909-918.	4.8	85
10	Threshold values of canopy reflectance indices and chlorophyll meter readings for optimal nitrogen nutrition of tomato. Annals of Applied Biology, 2015, 166, 271-285.	2.5	74
11	Consideration of total available N supply reduces N fertilizer requirement and potential for nitrate leaching loss in tomato production. Agriculture, Ecosystems and Environment, 2015, 200, 62-70.	5.3	72
12	Prescriptive–corrective nitrogen and irrigation management of fertigated and drip-irrigated vegetable crops using modeling and monitoring approaches. Agricultural Water Management, 2013, 119, 121-134.	5.6	65
13	Evaluation of the Watermark sensor for use with drip irrigated vegetable crops. Irrigation Science, 2006, 24, 185-202.	2.8	62
14	Different Responses of Various Chlorophyll Meters to Increasing Nitrogen Supply in Sweet Pepper. Frontiers in Plant Science, 2018, 9, 1752.	3.6	61
15	Decision support systems and models for aiding irrigation and nutrient management of vegetable crops. Agricultural Water Management, 2020, 240, 106209.	5.6	61
16	Production and water use in lettuces under variable water supply. Irrigation Science, 1996, 16, 125-137.	2.8	60
17	Determination of lower limits for irrigation management using in situ assessments of apparent crop water uptake made with volumetric soil water content sensors. Agricultural Water Management, 2007, 92, 13-28.	5.6	59
18	Prototype decision support system based on the VegSyst simulation model to calculate crop N and water requirements for tomato under plastic cover. Irrigation Science, 2014, 32, 237-253.	2.8	58

MARISA GALLARDO

#	Article	IF	CITATIONS
19	Shoot and root physiological responses to localized zones of soil moisture in cultivated and wild lettuce (Lactuca spp.). Plant, Cell and Environment, 1996, 19, 1169-1178.	5.7	54
20	Six Collective Challenges for Sustainability of AlmerÃa Greenhouse Horticulture. International Journal of Environmental Research and Public Health, 2019, 16, 4097.	2.6	54
21	Simulation of transpiration, drainage, N uptake, nitrate leaching, and N uptake concentration in tomato grown in open substrate. Agricultural Water Management, 2009, 96, 1773-1784.	5.6	51
22	Irrigation management of European greenhouse vegetable crops. Agricultural Water Management, 2020, 242, 106393.	5.6	51
23	A comparison of plant hydraulic conductances in wheat and lupins. Journal of Experimental Botany, 1996, 47, 233-239.	4.8	49
24	Proximal optical sensing of cucumber crop N status using chlorophyll fluorescence indices. European Journal of Agronomy, 2016, 73, 83-97.	4.1	49
25	Use of stem diameter variations to detect plant water stress in tomato. Irrigation Science, 2006, 24, 241-255.	2.8	48
26	Revised VegSyst model to calculate dry matter production, critical N uptake and ETc of several vegetable species grown in Mediterranean greenhouses. Agricultural Systems, 2016, 146, 30-43.	6.1	48
27	VegSyst, a simulation model of daily crop growth, nitrogen uptake and evapotranspiration for pepper crops for use in an on-farm decision support system. Irrigation Science, 2013, 31, 465-477.	2.8	45
28	Evaluation of the VegSyst model with muskmelon to simulate crop growth, nitrogen uptake and evapotranspiration. Agricultural Water Management, 2011, 101, 107-117.	5.6	44
29	Assessing crop N status of fertigated vegetable crops using plant and soil monitoring techniques. Annals of Applied Biology, 2015, 167, 387-405.	2.5	43
30	Derivation of sufficiency values of a chlorophyll meter to estimate cucumber nitrogen status and yield. Computers and Electronics in Agriculture, 2017, 141, 54-64.	7.7	43
31	Water use and production of a greenhouse pepper crop under optimum and limited water supply. Journal of Horticultural Science and Biotechnology, 2005, 80, 87-96.	1.9	39
32	Effect of N uptake concentration on nitrate leaching from tomato grown in free-draining soilless culture under Mediterranean conditions. Scientia Horticulturae, 2013, 150, 387-398.	3.6	38
33	Simulation of tomato growth, water and N dynamics using the EU-Rotate_N model in Mediterranean greenhouses with drip irrigation and fertigation. Agricultural Water Management, 2014, 132, 46-59.	5.6	38
34	Influence of time of day on measurement with chlorophyll meters and canopy reflectance sensors of different crop N status. Precision Agriculture, 2019, 20, 1087-1106.	6.0	35
35	Tools and Strategies for Sustainable Nitrogen Fertilisation of Vegetable Crops. Advances in Olericulture, 2017, , 11-63.	0.4	34
36	Crop Growth and Water Use Model for Lettuce. Journal of Irrigation and Drainage Engineering - ASCE, 1996, 122, 354-359.	1.0	33

MARISA GALLARDO

#	Article	IF	CITATIONS
37	Evaluation of rapid analysis systems for on-farm nitrate analysis in vegetable cropping. Spanish Journal of Agricultural Research, 2009, 7, 200.	0.6	31
38	Salinity Effects on Soil Moisture Measurement Made with a Capacitance Sensor. Soil Science Society of America Journal, 2007, 71, 1647-1657.	2.2	30
39	Sweet pepper and nitrogen supply in greenhouse production: Critical nitrogen curve, agronomic responses and risk of nitrogen loss. European Journal of Agronomy, 2020, 117, 126046.	4.1	26
40	EFFECT OF APPLIED N CONCENTRATION IN A FERTIGATED VEGETABLE CROP ON SOIL SOLUTION NITRATE AND NITRATE LEACHING LOSS. Acta Horticulturae, 2006, , 221-224.	0.2	26
41	Response of stem diameter variations to water stress in greenhouse-grown vegetable crops. Journal of Horticultural Science and Biotechnology, 2006, 81, 483-495.	1.9	25
42	Determination of sufficiency values of canopy reflectance vegetation indices for maximum growth and yield of cucumber. European Journal of Agronomy, 2017, 84, 1-15.	4.1	23
43	Responses of soil properties, crop yield and root growth to improved irrigation and N fertilization, soil tillage and compost addition in a pepper crop. Scientia Horticulturae, 2017, 225, 422-430.	3.6	23
44	Use of EU-Rotate_N and CropSyst models to predict yield, growth and water and N dynamics of fertigated leafy vegetables in a Mediterranean climate and to determine N fertilizer requirements. Agricultural Systems, 2016, 149, 150-164.	6.1	22
45	Water and fertilization management of vegetables: state of art and future challenges. European Journal of Horticultural Science, 2018, 83, 306-318.	0.7	21
46	Reducing nitrate leaching losses from vegetable production in Mediterranean greenhouses. Acta Horticulturae, 2020, , 105-118.	0.2	20
47	The Use of Chlorophyll Meters to Assess Crop N Status and Derivation of Sufficiency Values for Sweet Pepper. Sensors, 2019, 19, 2949.	3.8	17
48	Assessing Performance of Vegetation Indices to Estimate Nitrogen Nutrition Index in Pepper. Remote Sensing, 2020, 12, 763.	4.0	16
49	Adaptation of the VegSyst model to outdoor conditions for leafy vegetables and processing tomato. Agricultural Systems, 2019, 171, 51-64.	6.1	14
50	Modelling nitrogen, phosphorus, potassium, calcium and magnesium uptake, and uptake concentration, of greenhouse tomato with the VegSyst model. Scientia Horticulturae, 2021, 279, 109862.	3.6	13
51	ASSESSING RISK OF NITRATE LEACHING FROM THE HORTICULTURAL INDUSTRY OF ALMERIA, SPAIN. Acta Horticulturae, 2002, , 243-248.	0.2	12
52	Yield, nitrogen uptake and nitrogen leaching of tunnel greenhouse grown cucumber in a shallow groundwater region. Agricultural Water Management, 2019, 217, 73-80.	5.6	12
53	Use of a Portable Rapid Analysis System to Measure Nitrate Concentration of Nutrient and Soil Solution, and Plant Sap in Greenhouse Vegetable Production. Agronomy, 2021, 11, 819.	3.0	11
54	Effects of soil microbial communities associated to different soil fertilization practices on tomato growth in intensive greenhouse agriculture. Applied Soil Ecology, 2021, 162, 103896.	4.3	11

Marisa Gallardo

#	Article	IF	CITATIONS
55	UPTAKE CONCENTRATIONS OF A TOMATO CROP IN DIFFERENT SALINITY CONDITIONS. Acta Horticulturae, 2005, , 365-369.	0.2	10
56	Crop yields and N losses tradeoffs in a garlic–wheat rotation in southern Spain. European Journal of Agronomy, 2016, 73, 160-169.	4.1	10
57	Simulation of agronomic and nitrate pollution related parameters in vegetable cropping sequences in Mediterranean greenhouses using the EU-Rotate_N model. Agricultural Water Management, 2018, 199, 175-189.	5.6	10
58	Showcasing a fertigation management strategy for increasing water and nitrogen use efficiency in soil-grown vegetable crops in the FERTINNOWA project. Acta Horticulturae, 2019, , 17-24.	0.2	10
59	Soil Monitoring Methods to Assess Immediately Available Soil N for Fertigated Sweet Pepper. Agronomy, 2020, 10, 2000.	3.0	10
60	Crop response of greenhouse soil-grown cucumber to total available N in a Nitrate Vulnerable Zone. European Journal of Agronomy, 2020, 114, 125993.	4.1	10
61	Effect of Cultivar on Chlorophyll Meter and Canopy Reflectance Measurements in Cucumber. Sensors, 2020, 20, 509.	3.8	10
62	Sensitivity and uncertainty analysis in agro-hydrological modelling of drip fertigated lettuce crops under Mediterranean conditions. Computers and Electronics in Agriculture, 2019, 162, 630-650.	7.7	9
63	Optimizing nitrogen and water inputs for greenhouse vegetable production. Acta Horticulturae, 2015, , 15-30.	0.2	8
64	Reference values for phenological phases of chlorophyll meter readings and reflectance indices for optimal N nutrition of fertigated tomato. Acta Horticulturae, 2018, , 65-72.	0.2	8
65	Petiole sap nitrate concentration to assess crop nitrogen status of greenhouse sweet pepper. Scientia Horticulturae, 2021, 285, 110157.	3.6	8
66	RESPONSE OF STEM DIAMETER TO WATER STRESS IN GREENHOUSE-GROWN VEGETABLE CROPS. Acta Horticulturae, 2004, , 253-260.	0.2	7
67	MANAGEMENT FACTORS CONTRIBUTING TO NITRATE LEACHING LOSS FROM A GREENHOUSE-BASED INTENSIVE VEGETABLE PRODUCTION SYSTEM. Acta Horticulturae, 2006, , 179-184.	0.2	7
68	Recovery of 15N Labeled Nitrogen Fertilizer by Fertigated and Drip Irrigated Greenhouse Vegetable Crops. Agronomy, 2020, 10, 741.	3.0	7
69	VegSyst-DSS software to calculate N and irrigation requirements for seven vegetable species grown with fertigation in greenhouses in SE Spain. Acta Horticulturae, 2017, , 65-72.	0.2	5
70	Recent advances in water and nutrient management of soil-grown crops in Mediterranean greenhouses. Acta Horticulturae, 2017, , 31-44.	0.2	5
71	Use of fluorescence indices as predictors of crop N status and yield for greenhouse sweet pepper crops. Precision Agriculture, 2022, 23, 278-299.	6.0	5
72	CROP COEFFICIENTS OF A PEPPER CROP GROWN IN PLASTIC GREENHOUSES IN ALMERIA, SPAIN Acta Horticulturae, 2000, , 461-469.	0.2	3

MARISA GALLARDO

#	Article	IF	CITATIONS
73	Root and crop responses of sweet pepper (Capsicum annuum) to increasing N fertilization. Scientia Horticulturae, 2020, 273, 109645.	3.6	3
74	IRRIGATION SCHEDULING OF DRIP-IRRIGATED VEGETABLE CROPS GROWN IN GREENHOUSES USING CONTINUOUS SOIL MOISTURE MONITORING. Acta Horticulturae, 2004, , 653-660.	0.2	2
75	USE OF CROPSYST TO SIMULATE GROWTH, ETC AND N UPTAKE FOR THE DEVELOPMENT OF IRRIGATION AND N FERTILISER PROGRAMS IN INTENSIVE VEGETABLE CROP PRODUCTION. Acta Horticulturae, 2008, , 337-343.	0.2	2
76	Adaptation of VegSyst model to open air lettuce crops to be used in a decision support system. Acta Horticulturae, 2017, , 379-384.	0.2	2
77	Use of the VegSyst model to calculate crop N uptake and crop evapotranspiration of autumn- and spring-grown cucumber in Mediterranean greenhouses. Acta Horticulturae, 2017, , 47-54.	0.2	2
78	EFFECTS OF INCREASING SALINITY ON FRUIT DEVELOPMENT AND GROWTH OF TOMATO GROWN IN SOILLESS CULTURE. Acta Horticulturae, 2003, , 235-240.	0.2	1
79	NUTRITIONAL ASPECTS AFFECTING TOMATO QUALITY IN SOILLESS CULTURE. Acta Horticulturae, 2001, , 509-514.	0.2	1
80	Production and water use in lettuces under variable water supply. Irrigation Science, 1996, 16, 125-137.	2.8	1
81	Grain protein and grain yield of tritordeum in comparison to wheat and triticale. Plant and Soil, 1993, 153, 287-293.	3.7	0
82	Use of the VegSyst model to calculate crop N uptake and ETc of different vegetable species grown in Mediterranean greenhouses. Acta Horticulturae, 2018, , 105-112.	0.2	0
83	Modelling greenhouse-grown vegetable crops for optimisation of irrigation and nitrogen management. Acta Horticulturae, 2020, , 241-256.	0.2	0

Tillage effects on soil properties, crop responses and root density of sweet pepper (Capsicum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 302

85	Use of the VegSyst model to calculate crop N uptake and ETc of different vegetable species grown in Mediterranean greenhouses. Acta Horticulturae, 2017, , 105-112.	0.2	Ο
86	Reference values for phenological phases of chlorophyll meter readings and reflectance indices for optimal N nutrition of fertigated tomato. Acta Horticulturae, 2017, , 65-72.	0.2	0