Michel Sadelain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6717404/publications.pdf

Version: 2024-02-01

148 papers 30,356 citations

63 h-index 140 g-index

157 all docs

157 docs citations

157 times ranked

21414 citing authors

#	Article	IF	CITATIONS
1	Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Science Translational Medicine, 2014, 6, 224ra25.	5.8	2,069
2	Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2018, 378, 449-459.	13.9	1,951
3	CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia. Science Translational Medicine, 2013, 5, 177ra38.	5.8	1,748
4	Chimeric Antigen Receptor Therapy. New England Journal of Medicine, 2018, 379, 64-73.	13.9	1,488
5	Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature, 2017, 543, 113-117.	13.7	1,314
6	Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood, 2011, 118, 4817-4828.	0.6	1,135
7	The Basic Principles of Chimeric Antigen Receptor Design. Cancer Discovery, 2013, 3, 388-398.	7.7	1,108
8	Gene therapy comes of age. Science, 2018, 359, .	6.0	936
9	CAR T cell–induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nature Medicine, 2018, 24, 731-738.	15.2	861
10	Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nature Biotechnology, 2002, 20, 70-75.	9.4	826
11	Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. Journal of Clinical Investigation, 2016, 126, 3130-3144.	3.9	773
12	Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nature Biotechnology, 2013, 31, 71-75.	9.4	719
13	Structural Design of Engineered Costimulation Determines Tumor Rejection Kinetics and Persistence of CAR T Cells. Cancer Cell, 2015, 28, 415-428.	7.7	641
14	Therapeutic T cell engineering. Nature, 2017, 545, 423-431.	13.7	622
15	Clinical and Biological Correlates of Neurotoxicity Associated with CAR T-cell Therapy in Patients with B-cell Acute Lymphoblastic Leukemia. Cancer Discovery, 2018, 8, 958-971.	7.7	594
16	Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nature Medicine, 2003, 9, 279-286.	15.2	586
17	Therapeutic haemoglobin synthesis in β-thalassaemic mice expressing lentivirus-encoded human β-globin. Nature, 2000, 406, 82-86.	13.7	581
18	Senolytic CAR T cells reverse senescence-associated pathologies. Nature, 2020, 583, 127-132.	13.7	483

#	Article	IF	CITATIONS
19	Targeting tumours with genetically enhanced T lymphocytes. Nature Reviews Cancer, 2003, 3, 35-45.	12.8	467
20	Chimeric Antigen Receptors Combining 4-1BB and CD28 Signaling Domains Augment Pl3kinase/AKT/Bcl-XL Activation and CD8+ T Cell–mediated Tumor Eradication. Molecular Therapy, 2010, 18, 413-420.	3.7	442
21	Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4-dependent tumor immunity. Science Translational Medicine, 2014, 6, 261ra151.	5.8	432
22	The promise and potential pitfalls of chimeric antigen receptors. Current Opinion in Immunology, 2009, 21, 215-223.	2.4	423
23	The pharmacology of second-generation chimeric antigen receptors. Nature Reviews Drug Discovery, 2015, 14, 499-509.	21.5	411
24	CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature, 2019, 568, 112-116.	13.7	408
25	Genetically Targeted T Cells Eradicate Systemic Acute Lymphoblastic Leukemia Xenografts. Clinical Cancer Research, 2007, 13, 5426-5435.	3.2	398
26	Safe harbours for the integration of new DNA in the human genome. Nature Reviews Cancer, 2012, 12, 51-58.	12.8	391
27	Mesothelin-Targeted CARs: Driving T Cells to Solid Tumors. Cancer Discovery, 2016, 6, 133-146.	7.7	359
28	Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nature Medicine, 2019, 25, 82-88.	15.2	329
29	The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Science Translational Medicine, 2019, 11, .	5.8	326
30	Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nature Reviews Immunology, 2022, 22, 85-96.	10.6	315
31	Genomic safe harbors permit high \hat{l}^2 -globin transgene expression in thalassemia induced pluripotent stem cells. Nature Biotechnology, 2011, 29, 73-78.	9.4	277
32	Manufacturing Validation of Biologically Functional T Cells Targeted to CD19 Antigen for Autologous Adoptive Cell Therapy. Journal of Immunotherapy, 2009, 32, 169-180.	1.2	269
33	Antigen-dependent CD28 Signaling Selectively Enhances Survival and Proliferation in Genetically Modified Activated Human Primary T Lymphocytes. Journal of Experimental Medicine, 1998, 188, 619-626.	4.2	268
34	T cell–encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nature Medicine, 2007, 13, 1440-1449.	15.2	265
35	A Herceptin-Based Chimeric Antigen Receptor with Modified Signaling Domains Leads to Enhanced Survival of Transduced T Lymphocytes and Antitumor Activity. Journal of Immunology, 2009, 183, 5563-5574.	0.4	258
36	Integrating Proteomics and Transcriptomics for Systematic Combinatorial Chimeric Antigen Receptor Therapy of AML. Cancer Cell, 2017, 32, 506-519.e5.	7.7	240

#	Article	IF	Citations
37	Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. Journal of Clinical Investigation, 2016, 126, 4262-4272.	3.9	229
38	A Phase I Trial of Regional Mesothelin-Targeted CAR T-cell Therapy in Patients with Malignant Pleural Disease, in Combination with the Anti‰PD-1 Agent Pembrolizumab. Cancer Discovery, 2021, 11, 2748-2763.	7.7	222
39	A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human \hat{l}^2 -globin gene transfer. Blood, 2003, 101, 2932-2939.	0.6	211
40	The cHS4 Insulator Increases the Probability of Retroviral Expression at Random Chromosomal Integration Sites. Journal of Virology, 2000, 74, 4679-4687.	1.5	198
41	Cancer Patient T Cells Genetically Targeted to Prostate-Specific Membrane Antigen Specifically Lyse Prostate Cancer Cells and Release Cytokines in Response to Prostate-Specific Membrane Antigen. Neoplasia, 1999, 1, 123-127.	2.3	197
42	The Journey from Discoveries in Fundamental Immunology to Cancer Immunotherapy. Cancer Cell, 2015, 27, 439-449.	7.7	194
43	Toxicity and response after CD19-specific CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL. Blood, 2019, 134, 2361-2368.	0.6	190
44	CAR therapy: the CD19 paradigm. Journal of Clinical Investigation, 2015, 125, 3392-3400.	3.9	187
45	Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nature Medicine, 2017, 23, 242-249.	15. 2	179
46	Low-Dose Radiation Conditioning Enables CAR T Cells to Mitigate Antigen Escape. Molecular Therapy, 2018, 26, 2542-2552.	3.7	169
47	Induction of human cytotoxic T lymphocytes by artificial antigen-presenting cells. Nature Biotechnology, 2000, 18, 405-409.	9.4	165
48	Successful treatment of murine \hat{l}^2 -thalassemia intermedia by transfer of the human \hat{l}^2 -globin gene. Blood, 2002, 99, 1902-1908.	0.6	159
49	Mesothelin Overexpression Promotes Mesothelioma Cell Invasion and MMP-9 Secretion in an Orthotopic Mouse Model and in Epithelioid Pleural Mesothelioma Patients. Clinical Cancer Research, 2012, 18, 2478-2489.	3.2	159
50	New Cell Sources for T Cell Engineering and Adoptive Immunotherapy. Cell Stem Cell, 2015, 16, 357-366.	5.2	134
51	Mesothelin Overexpression Is a Marker of Tumor Aggressiveness and Is Associated with Reduced Recurrence-Free and Overall Survival in Early-Stage Lung Adenocarcinoma. Clinical Cancer Research, 2014, 20, 1020-1028.	3.2	128
52	Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nature Medicine, 2022, 28, 713-723.	15.2	117
53	Combined CD28 and 4-1BB Costimulation Potentiates Affinity-tuned Chimeric Antigen Receptor–engineered T Cells. Clinical Cancer Research, 2019, 25, 4014-4025.	3.2	110
54	Targeted Elimination of Prostate Cancer by Genetically Directed Human T Lymphocytes. Cancer Research, 2005, 65, 9080-9088.	0.4	108

#	Article	IF	CITATIONS
55	CD19 CAR T Cells. Cell, 2017, 171, 1471.	13.5	88
56	Clinical utilization of Chimeric Antigen Receptor T-cells (CAR-T) in B-cell acute lymphoblastic leukemia (ALL) \hat{a} emergent opinion from the European Society for Blood and Marrow Transplantation (EBMT) and the American Society for Blood and Marrow Transplantation (ASBMT). Bone Marrow Transplantation, 2019, 54, 1868-1880.	1.3	86
57	Clinical Utilization of Chimeric Antigen Receptor T Cells in B Cell Acute Lymphoblastic Leukemia: An Expert Opinion from the European Society for Blood and Marrow Transplantation and the American Society for Transplantation and Cellular Therapy. Biology of Blood and Marrow Transplantation, 2019, 25, e76-e85.	2.0	85
58	Neoantigen quality predicts immunoediting in survivors of pancreatic cancer. Nature, 2022, 606, 389-395.	13.7	80
59	Cell and Gene Therapy for the Beta-Thalassemias: Advances and Prospects. Human Gene Therapy, 2016, 27, 295-304.	1.4	79
60	Chimeric Antigen Receptors: A Cell and Gene Therapy Perspective. Molecular Therapy, 2017, 25, 1117-1124.	3.7	79
61	Chimeric antigen receptors: driving immunology towards synthetic biology. Current Opinion in Immunology, 2016, 41, 68-76.	2.4	77
62	HLA-independent T cell receptors for targeting tumors with low antigen density. Nature Medicine, 2022, 28, 345-352.	15.2	73
63	An MHC-restricted antibody-based chimeric antigen receptor requires TCR-like affinity to maintain antigen specificity. Molecular Therapy - Oncolytics, 2016, 3, 16023.	2.0	71
64	Biology and clinical application of CAR T cells for B cell malignancies. International Journal of Hematology, 2016, 104, 6-17.	0.7	68
65	Posttransplant chimeric antigen receptor therapy. Blood, 2018, 131, 1045-1052.	0.6	67
66	Autologous CD19-Targeted CAR T Cells in Patients with Residual CLL following Initial Purine Analog-Based Therapy. Molecular Therapy, 2018, 26, 1896-1905.	3.7	65
67	Rapid selection of antigen-specific T lymphocytes by retroviral transduction. Blood, 2000, 96, 109-117.	0.6	63
68	Safe mobilization of CD34+ cells in adults with \hat{l}^2 -thalassemia and validation of effective globin gene transfer for clinical investigation. Blood, 2014, 123, 1483-1486.	0.6	62
69	Prostate-specific membrane antigen (PSMA)-specific monoclonal antibodies in the treatment of prostate and other cancers. Cancer and Metastasis Reviews, 1999, 18, 483-490.	2.7	61
70	CD19 CAR T cells following autologous transplantation in poor-risk relapsed and refractory B-cell non-Hodgkin lymphoma. Blood, 2019, 134, 626-635.	0.6	59
71	Tumor-Targeted Human T Cells Expressing CD28-Based Chimeric Antigen Receptors Circumvent CTLA-4 Inhibition. PLoS ONE, 2015, 10, e0130518.	1.1	53
72	Early experience using salvage radiotherapy for relapsed/refractory nonâ€Hodgkin lymphomas after CD19 chimericÂantigen receptor (CAR)ÂT cell therapy. British Journal of Haematology, 2020, 190, 45-51.	1.2	51

#	Article	IF	CITATIONS
73	Locus control region elements HS1 and HS4 enhance the therapeutic efficacy of globin gene transfer in \hat{l}^2 -thalassemic mice. Blood, 2007, 110, 4175-4178.	0.6	50
74	Immune responses and immunotherapeutic interventions in malignant pleural mesothelioma. Cancer Immunology, Immunotherapy, 2011, 60, 1509-1527.	2.0	50
75	Building a Safer and Faster CAR: Seatbelts, Airbags, and CRISPR. Biology of Blood and Marrow Transplantation, 2018, 24, 27-31.	2.0	49
76	Combining a CAR and a chimeric costimulatory receptor enhances T cell sensitivity to low antigen density and promotes persistence. Science Translational Medicine, 2021, 13, eabh1962.	5.8	49
77	Therapeutic Options for Patients with Severe \hat{l}^2 -Thalassemia: The Need for Globin Gene Therapy. Human Gene Therapy, 2007, 18, 1-9.	1.4	48
78	Recent advances in globin gene transfer for the treatment of beta-thalassemia and sickle cell anemia. Current Opinion in Hematology, 2006, 13, 142-148.	1.2	47
79	ASGCT and JSGT Joint Position Statement on Human Genomic Editing. Molecular Therapy, 2015, 23, 1282.	3.7	47
80	Safety and efficacy of plerixafor dose escalation for the mobilization of CD34 ⁺ hematopoietic progenitor cells in patients with sickle cell disease: interim results. Haematologica, 2018, 103, 770-777.	1.7	47
81	Plerixafor+G-CSF–mobilized CD34+ cells represent an optimal graft source for thalassemia gene therapy. Blood, 2015, 126, 616-619.	0.6	45
82	CD19 CAR Therapy for Acute Lymphoblastic Leukemia. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2015, , e360-e363.	1.8	45
83	CAR T cells: Building on the CD19 paradigm. European Journal of Immunology, 2021, 51, 2151-2163.	1.6	43
84	Interventions and outcomes of adult patients with B-ALL progressing after CD19 chimeric antigen receptor T-cell therapy. Blood, 2021, 138, 531-543.	0.6	42
85	T-Cell Engineering for Cancer Immunotherapy. Cancer Journal (Sudbury, Mass), 2009, 15, 451-455.	1.0	39
86	Activation conditions determine susceptibility of murine primary T-lymphocytes to retroviral infection. Journal of Gene Medicine, 1999, 1, 341-351.	1.4	37
87	Implications of Minimal Residual Disease Negative Complete Remission (MRD-CR) and Allogeneic Stem Cell Transplant on Safety and Clinical Outcome of CD19-Targeted 19-28z CAR Modified T Cells in Adult Patients with Relapsed, Refractory B-Cell ALL. Blood, 2015, 126, 682-682.	0.6	37
88	Progress Toward the Genetic Treatment of the \hat{I}^2 -Thalassemias. Annals of the New York Academy of Sciences, 2005, 1054, 78-91.	1.8	36
89	Antibody with Infinite Affinity for In Vivo Tracking of Genetically Engineered Lymphocytes. Journal of Nuclear Medicine, 2018, 59, 1894-1900.	2.8	36
90	A Phase I First-in-Human Clinical Trial of CD19-Targeted 19-28z/4-1BBL "Armored" CAR T Cells in Patients with Relapsed or Refractory NHL and CLL Including Richter's Transformation. Blood, 2018, 132, 224-224.	0.6	34

#	Article	IF	Citations
91	Cancer antigen profiling for malignant pleural mesothelioma immunotherapy: expression and coexpression of mesothelin, cancer antigen 125, and Wilms tumor 1. Oncotarget, 2017, 8, 77872-77882.	0.8	31
92	Strategy for a multicenter phase I clinical trial to evaluate globin gene transfer in βâ€thalassemia. Annals of the New York Academy of Sciences, 2010, 1202, 52-58.	1.8	29
93	Stable in vivo expression of glucose-6-phosphate dehydrogenase (G6PD) and rescue of G6PD deficiency in stem cells by gene transfer. Blood, 2000, 96, 4111-4117.	0.6	25
94	Stem Cell Engineering for the Treatment of Severe Hemoglobinopathies. Current Molecular Medicine, 2008, 8, 690-697.	0.6	25
95	Screening Clinical Cell Products for Replication Competent Retrovirus: The National Gene Vector Biorepository Experience. Molecular Therapy - Methods and Clinical Development, 2018, 10, 371-378.	1.8	24
96	A Phase II Study of Prophylactic Anakinra to Prevent CRS and Neurotoxicity in Patients Receiving CD19 CAR T Cell Therapy for Relapsed or Refractory Lymphoma. Blood, 2021, 138, 96-96.	0.6	24
97	Gene Therapy and Genome Editing. Hematology/Oncology Clinics of North America, 2018, 32, 329-342.	0.9	23
98	GENETIC TREATMENT OF THE HAEMOGLOINOPATHIES: RECOMBINATIONS AND NEW COMBINATIONS. British Journal of Haematology, 1997, 98, 247-253.	1.2	22
99	Escape Mutations, Ganciclovir Resistance, and Teratoma Formation in Human iPSCs Expressing an HSVtk Suicide Gene. Molecular Therapy - Nucleic Acids, 2016, 5, e284.	2.3	21
100	Adoptively transferred TRAIL+ T cells suppress GVHD and augment antitumor activity. Journal of Clinical Investigation, 2013, 123, 2654-2662.	3.9	21
101	Myeloid leukemia switch as immune escape from CD19 chimeric antigen receptor (CAR) therapy. Translational Cancer Research, 2016, 5, S221-S225.	0.4	21
102	Cas9â€Cleavage Sequences in Sizeâ€Reduced Plasmids Enhance Nonviral Genome Targeting of CARs in Primary Human T Cells. Small Methods, 2021, 5, e2100071.	4.6	20
103	Lentiviral globin gene therapy with reduced-intensity conditioning in adults with \hat{l}^2 -thalassemia: a phase 1 trial. Nature Medicine, 2022, 28, 63-70.	15.2	18
104	CD19-directed chimeric antigen receptor T cell therapy in Waldenstr \tilde{A} ¶m macroglobulinemia: a preclinical model and initial clinical experience. , 2022, 10, e004128.		18
105	Sturm und Drang over Suicidal Lymphocytes. Molecular Therapy, 2002, 5, 655-657.	3.7	15
106	The quest for spatio-temporal control of CAR T cells. Cell Research, 2015, 25, 1281-1282.	5.7	13
107	Supplying Clotting Factors From Hematopoietic Stem Cell–derived Erythroid and Megakaryocytic Lineage Cells. Molecular Therapy, 2009, 17, 1994-1999.	3.7	12
108	Reprint of: Building a Safer and Faster CAR: Seatbelts, Airbags, and CRISPR. Biology of Blood and Marrow Transplantation, 2018, 24, S15-S19.	2.0	12

#	Article	IF	Citations
109	Globin gene transfer for the treatment of severe hemoglobinopathies: a paradigm for stem cell-based gene therapy. Journal of Gene Medicine, 2002, 4, 113-121.	1.4	11
110	Combinatorial Antigen Targeting: Ideal T-Cell Sensing and Anti-Tumor Response. Trends in Molecular Medicine, 2016, 22, 271-273.	3.5	11
111	Multi-Center Clinical Trial of CAR T Cells in Pediatric/Young Adult Patients with Relapsed B-Cell ALL. Blood, 2015, 126, 2533-2533.	0.6	10
112	A Cell Engineering Strategy to Enhance the Safety of Stem Cell Therapies. Cell Reports, 2014, 8, 1677-1685.	2.9	9
113	Why commonplace encounters turn to fatal attraction. Nature Genetics, 1998, 20, 103-104.	9.4	8
114	Ectopic activation of the miR-200c–EpCAM axis enhances antitumor T cell responses in models of adoptive cell therapy. Science Translational Medicine, 2021, 13, eabg4328.	5.8	8
115	T Cells Genetically Targeted to CD19 Eradicate B-ALL In a Novel Syngeneic Mouse Disease Model. Blood, 2010, 116, 171-171.	0.6	8
116	The Polycomb Group Protein L3MBTL1 Represses a SMAD5-Mediated Hematopoietic Transcriptional Program in Human Pluripotent Stem Cells. Stem Cell Reports, 2015, 4, 658-669.	2.3	7
117	First US Phase I Clinical Trial Of Globin Gene Transfer For The Treatment Of Beta-Thalassemia Major. Blood, 2013, 122, 716-716.	0.6	7
118	Tales of Antigen Evasion from CAR Therapy. Cancer Immunology Research, 2016, 4, 473-473.	1.6	6
119	Concurrent therapy of chronic lymphocytic leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia utilizing CD19-targeted CAR T-cells. Leukemia and Lymphoma, 2018, 59, 1717-1721.	0.6	6
120	Impact of the Conditioning Chemotherapy On Outcomes in Adoptive T Cell Therapy: Results From a Phase I Clinical Trial of Autologous CD19-Targeted T Cells for Patients with Relapsed CLL. Blood, 2012, 120, 1797-1797.	0.6	6
121	CD19 Targeted Allogeneic EBV-Specific T Cells for the Treatment of Relapsed ALL in Pediatric Patients Post HSCT. Blood, 2012, 120, 353-353.	0.6	6
122	"IF-Better" Gating: Combinatorial Targeting and Synergistic Signaling for Enhanced CAR T Cell Efficacy. Blood, 2021, 138, 2774-2774.	0.6	6
123	Adoptive-transfer therapy of tumors with the tumor-specific primary cytotoxic T cells induced in vitro with the B7.1-transduced MCA205 cell line. Cancer Immunology, Immunotherapy, 1999, 47, 257-264.	2.0	5
124	Process and procedural adjustments to improve <scp>CD34</scp> + collection efficiency of hematopoietic progenitor cell collections in sickle cell disease. Transfusion, 2021, 61, 2775-2781.	0.8	3
125	Activation conditions determine susceptibility of murine primary T-lymphocytes to retroviral infection., 1999, 1, 341.		3
126	A Phase I Study of CD19-Targeted 19(T2)28z1xx CAR T Cells in Adult Patients with Relapsed or Refractory B-Cell Malignancies. Blood, 2020, 136, 43-44.	0.6	3

#	Article	IF	CITATIONS
127	Comparative Blood Group Profiling of Human Erythroid Cells (EBs) Generated from Adult Blood (AB), Cord Blood (CB), Human Embryonic Stem Cells (hESC) and Induced Pluripotent Stem Cells (iPS). Blood, 2011, 118, 1027-1027.	0.6	3
128	Globin vector regulatory elements are active in early hematopoietic progenitor cells. Molecular Therapy, 2022, 30, 2199-2209.	3.7	3
129	NOTCH and CAR Signaling Control T Cell Lineage Commitment from Pluripotent Stem Cells. Blood, 2020, 136, 30-30.	0.6	2
130	Studies of White Cell, Platelet, and Coagulation Activation with Plerixafor Administration in Patients with Sickle Cell Disease. Blood, 2017, 130, 963-963.	0.6	2
131	Targeted Integration of a CAR at a Novel Genomic Safe Harbor Directs Potent Therapeutic Outcomes. Blood, 2020, 136, 28-28.	0.6	2
132	Loss of <i>TET2</i> Uncouples Proliferative and Effector Functions in CART Cells. Blood, 2020, 136, 1-1.	0.6	2
133	LiPS-A3S, a human genomic site for robust expression of inserted transgenes. Molecular Therapy - Nucleic Acids, 2016, 5, e394.	2.3	1
134	Artificial Antigen-Presenting Cells Permit Selective In Vitro Generation of CMV-Specific T-Cells of Desired HLA Allelic Restriction for Adoptive Immunotherapy in Recipients of HLA Disparate Allografts Blood, 2005, 106, 1298-1298.	0.6	1
135	Virus Specific T-Lymphocytes Genetically Modified to Target the CD19 Antigen Eradicates Systemic Lymphoma In Mice. Blood, 2010, 116, 2092-2092.	0.6	1
136	Recovery and Biodistribution of Ex-Vivo Expanded Human Erythroblasts Injected Into NOD/SCID/IL2Rî³null Mice. Blood, 2010, 116, 338-338.	0.6	1
137	Over-Expression of TRAIL on Donor T Cells Enhances GVT and Suppresses Gvhd Via Elimination of Alloreactive T Cells and Host APC. Blood, 2011, 118, 817-817.	0.6	1
138	From T-cell Engineering to CAR therapy: Progress and Prospects. Blood, 2015, 126, SCI-23-SCI-23.	0.6	1
139	Probing the AML Surfaceome for Chimeric Antigen Receptor (CAR) Targets. Blood, 2016, 128, 526-526.	0.6	1
140	Stable in vivo expression of glucose-6-phosphate dehydrogenase (G6PD) and rescue of G6PD deficiency in stem cells by gene transfer. Blood, 2000, 96, 4111-4117.	0.6	1
141	Insights into Chimeric Antigen Receptor Therapy for Chronic Lymphoblastic Leukemia. Trends in Molecular Medicine, 2018, 24, 729-731.	3.5	0
142	Generation of CMV-Specific T-Lymphocytes for Adoptive Immunotherapy: A Comparison of Artificial Antigen-Presenting Cells and Autologous Dendritic Cells Pulsed with CMV-pp65 Protein-Spanning Pentadecapeptide Pools Blood, 2005, 106, 5546-5546.	0.6	0
143	Genomic Safe Harbors in Human iPS Cells. Blood, 2011, 118, SCI-47-SCI-47.	0.6	0
144	Artificial Antigen Presenting Cells Expand NY-ESO-1 Antigen-Specific CD8+ T Cells From Patients with Melanoma. Blood, 2011, 118, 4309-4309.	0.6	0

#	Article	IF	CITATIONS
145	In Vivo comparison of 3 Suicide Gene-Prodrug Combinations in a Mouse Graft-Versus-Host-Disease Model. Blood, 2011, 118, 3121-3121.	0.6	O
146	Targeting a Novel Epigenetic Silencing Mechanism to Efficiently Upregulate Fetal Globin Gene Expression. Blood, 2011, 118, 352-352.	0.6	0
147	Synergism between CAR-T Cells and a Personalized Tumor Vaccine in Hematological Malignances. Blood, 2021, 138, 737-737.	0.6	0
148	Erythroid Specificity and Safety of Globin-Encoding Lentiviral Vectors. Blood, 2020, 136, 29-29.	0.6	0