
Fabienne Micheli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6717213/publications.pdf Version: 2024-02-01

FARIENNE MICHELL

#	Article	IF	CITATIONS
1	Cupuassu (Theobroma grandiflorum [Willd. ex Sprengel] Schumann) Fruit Development: Key Genes Involved in Primary Metabolism and Stress Response. Agronomy, 2022, 12, 763.	3.0	1
2	Transgenic tomato expressing an oxalate decarboxylase gene from Flammulina sp. shows increased survival to Moniliophthora perniciosa. Scientia Horticulturae, 2022, 299, 111004.	3.6	0
3	Identification of a key protein set involved in Moniliophthora perniciosa necrotrophic mycelium and basidiocarp development. Fungal Genetics and Biology, 2021, 157, 103635.	2.1	3
4	The pathogen Moniliophthora perniciosa promotes differential proteomic modulation of cacao genotypes with contrasting resistance to witches´broom disease. BMC Plant Biology, 2020, 20, 1.	3.6	496
5	The glutathione peroxidase family of Theobroma cacao: Involvement in the oxidative stress during witches' broom disease. International Journal of Biological Macromolecules, 2020, 164, 3698-3708.	7.5	12
6	Effect of Environmental Conditions on the Yield of Peel and Composition of Essential Oils from Citrus Cultivated in Bahia (Brazil) and Corsica (France). Agronomy, 2020, 10, 1256.	3.0	10
7	Moniliophthora perniciosa development: key genes involved in stress-mediated cell wall organization and autophagy. International Journal of Biological Macromolecules, 2020, 154, 1022-1035.	7.5	8
8	RRGPredictor, a set-theory-based tool for predicting pathogen-associated molecular pattern receptors (PRRs) and resistance (R) proteins from plants. Genomics, 2020, 112, 2666-2676.	2.9	13
9	Involvement of structurally distinct cupuassu chitinases and osmotin in plant resistance to the fungus Moniliophthora perniciosa. Plant Physiology and Biochemistry, 2020, 148, 142-151.	5.8	10
10	HVA22 from citrus: A small gene family whose some members are involved in plant response to abiotic stress. Plant Physiology and Biochemistry, 2019, 142, 395-404.	5.8	16
11	Phylogenetic Origin of Primary and Secondary Metabolic Pathway Genes Revealed by C. maxima and C. reticulata Diagnostic SNPs. Frontiers in Plant Science, 2019, 10, 1128.	3.6	1
12	The selenium-binding protein of Theobroma cacao: A thermostable protein involved in the witches' broom disease resistance. Plant Physiology and Biochemistry, 2019, 142, 472-481.	5.8	3
13	Comparative proteomics of two citrus varieties in response to infection by the fungus Alternaria alternata. International Journal of Biological Macromolecules, 2019, 136, 410-423.	7.5	12
14	Low coverage sequencing for repetitive DNA analysis in Passiflora edulis Sims: citogenomic characterization of transposable elements and satellite DNA. BMC Genomics, 2019, 20, 262.	2.8	17
15	Transcriptomic analysis related to the flowering of the citrus hybrid Microcitrangemonia. Current Plant Biology, 2019, 18, 100097.	4.7	1
16	Recurrent water deficit causes alterations in the profile of redox proteins in citrus plants. Plant Physiology and Biochemistry, 2018, 132, 497-507.	5.8	8
17	Genome sequence and effectorome of Moniliophthora perniciosa and Moniliophthora roreri subpopulations. BMC Genomics, 2018, 19, 509.	2.8	18
18	Characterization of tropical mandarin collection: Implications for breeding related to fruit quality. Scientia Horticulturae, 2018, 239, 289-299.	3.6	8

FABIENNE MICHELI

#	Article	IF	CITATIONS
19	Recurrent water deficit causes epigenetic and hormonal changes in citrus plants. Scientific Reports, 2017, 7, 13684.	3.3	62
20	Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae). PLoS ONE, 2017, 12, e0170799.	2.5	12
21	Alternative oxidase (AOX) constitutes a small family of proteins in Citrus clementina and Citrus sinensis L. Osb. PLoS ONE, 2017, 12, e0176878.	2.5	11
22	Different adaptation strategies of two citrus scion/rootstock combinations in response to drought stress. PLoS ONE, 2017, 12, e0177993.	2.5	28
23	Genome-wide identification and characterization of cacao WRKY transcription factors and analysis of their expression in response to witches' broom disease. PLoS ONE, 2017, 12, e0187346.	2.5	23
24	Selection of Reference Genes for Expression Study in Pulp and Seeds of Theobroma grandiflorum (Willd. ex Spreng.) Schum. PLoS ONE, 2016, 11, e0160646.	2.5	10
25	Mycelial development preceding basidioma formation in Moniliophthora perniciosa is associated to chitin, sugar and nutrient metabolism alterations involving autophagy. Fungal Genetics and Biology, 2016, 86, 33-46.	2.1	11
26	First Microsatellite Markers Developed from Cupuassu ESTs: Application in Diversity Analysis and Cross-Species Transferability to Cacao. PLoS ONE, 2016, 11, e0151074.	2.5	10
27	DATA MINING AND SYSTEMS BIOLOGY FOR IDENTIFYING KEY GENES INVOLVED IN CITRUS QUALITY. Acta Horticulturae, 2015, , 591-598.	0.2	0
28	TcCYPR04, a Cacao Papain-Like Cysteine-Protease Detected in Senescent and Necrotic Tissues Interacts with a Cystatin TcCYS4. PLoS ONE, 2015, 10, e0144440.	2.5	7
29	The pathogenesis-related protein PR-4b from Theobroma cacao presents RNase activity, Ca2+ and Mg2+ dependent-DNase activity and antifungal action on Moniliophthora perniciosa. BMC Plant Biology, 2014, 14, 161.	3.6	36
30	Kinetics and Histopathology of the Cacao-Ceratocystis cacaofunesta Interaction. Tropical Plant Biology, 2013, 6, 37-45.	1.9	12
31	Polygalacturonases from Moniliophthora perniciosa are regulated by fermentable carbon sources and possible post-translational modifications. Fungal Genetics and Biology, 2013, 60, 110-121.	2.1	7
32	Identification, characterization and mapping of EST-derived SSRs from the cacao–Ceratocystis cacaofunesta interaction. Tree Genetics and Genomes, 2013, 9, 117-127.	1.6	8
33	Tc-cAPX, a cytosolic ascorbate peroxidase of Theobroma cacao L.Âengaged in the interaction with Moniliophthora perniciosa, theÂcausing agent of witches' broom disease. Plant Physiology and Biochemistry, 2013, 73, 254-265.	5.8	12
34	Activity of polygalacturonases from Moniliophthora perniciosa depends on fungus culture conditions and is enhanced by Theobroma cacao extracts. Physiological and Molecular Plant Pathology, 2013, 83, 40-50.	2.5	11
35	Recombinant β-1,3-1,4-glucanase from Theobroma cacao impairs Moniliophthora perniciosa mycelial growth. Molecular Biology Reports, 2013, 40, 5417-5427.	2.3	10
36	Identification of quantitative trait loci linked to Ceratocystis wilt resistance in cacao. Molecular Breeding, 2012, 30, 1563-1571.	2.1	9

FABIENNE MICHELI

#	Article	IF	CITATIONS
37	Evaluation of the Allergenicity Potential of TcPR-10 Protein from Theobroma cacao. PLoS ONE, 2012, 7, e37969.	2.5	9
38	Transcriptomics and systems biology analysis in identification of specific pathways involved in cacao resistance and susceptibility to witches' broom disease. Molecular BioSystems, 2012, 8, 1507.	2.9	23
39	Unraveling new genes associated with seed development and metabolism in Bixa orellana L. by expressed sequence tag (EST) analysis. Molecular Biology Reports, 2011, 38, 1329-1340.	2.3	29
40	Hydrogen peroxide formation in cacao tissues infected by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Physiology and Biochemistry, 2011, 49, 917-922.	5.8	48
41	Theobroma cacao cystatins impair Moniliophthora perniciosa mycelial growth and are involved in postponing cell death symptoms. Planta, 2010, 232, 1485-1497.	3.2	21
42	Development, characterization, validation, and mapping of SSRs derived from Theobroma cacao L–Moniliophthora perniciosa interaction ESTs. Tree Genetics and Genomes, 2010, 6, 663-676.	1.6	20
43	Functional Genomics of Cacao. Advances in Botanical Research, 2010, 55, 119-177.	1.1	17
44	High-Affinity Copper Transport and Snq2 Export Permease of <i>Saccharomyces cerevisiae</i> Modulate Cytotoxicity of PR-10 from <i>Theobroma cacao</i> . Molecular Plant-Microbe Interactions, 2009, 22, 39-51.	2.6	32
45	Protein extraction for proteome analysis from cacao leaves and meristems, organs infected by <i>Moniliophthora perniciosa</i> , the causal agent of the witches' broom disease. Electrophoresis, 2008, 29, 2391-2401.	2.4	89
46	Use of response surface methodology to examine chitinase regulation in the basidiomycete Moniliophthora perniciosa. Mycological Research, 2008, 112, 399-406.	2.5	50
47	Pectin Methyl Esterase Inhibits Intrusive and Symplastic Cell Growth in Developing Wood Cells of <i>Populus</i> Â. Plant Physiology, 2008, 146, 323-324.	4.8	126
48	Identification of New Potential Regulators of the Medicago truncatula—Sinorhizobium meliloti Symbiosis Using a Large-Scale Suppression Subtractive Hybridization Approach. Molecular Plant-Microbe Interactions, 2007, 20, 321-332.	2.6	35
49	Involvement of calcium oxalate degradation during programmed cell death in Theobroma cacao tissues triggered by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Science, 2007, 173, 106-117.	3.6	94
50	Comparative Analysis of Expressed Genes from Cacao Meristems Infected by Moniliophthora perniciosa. Annals of Botany, 2007, 100, 129-140.	2.9	74
51	Characterization of necrosis and ethylene-inducing proteins (NEP) in the basidiomycete Moniliophthora perniciosa, the causal agent of witches' broom in Theobroma cacao. Mycological Research, 2007, 111, 443-455.	2.5	86
52	Isolation and purification of functional total RNA from different organs of cacao tree during its interaction with the pathogen Crinipellis perniciosa. BioTechniques, 2003, 35, 494-500.	1.8	28
53	Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucleic Acids Research, 2002, 30, 5579-5592.	14.5	193
54	Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends in Plant Science, 2001, 6, 414-419.	8.8	801

#	Article	IF	CITATIONS
55	Radial Distribution Pattern of Pectin Methylesterases across the Cambial Region of Hybrid Aspen at Activity and Dormancy. Plant Physiology, 2000, 124, 191-200.	4.8	75
56	Characterization of the pectin methylesterase-like gene AtPME3: a new member of a gene family comprising at least 12 genes in Arabidopsis thaliana. Gene, 1998, 220, 13-20.	2.2	47