
Mark Winey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6716066/publications.pdf Version: 2024-02-01

MADE MINEY

#	Article	lF	CITATIONS
1	Electron cryo-tomography structure of axonemal doublet microtubule from <i>Tetrahymena thermophila</i> . Life Science Alliance, 2022, 5, e202101225.	2.8	17
2	Microtubule-associated proteins and motors required for ectopic microtubule array formation in <i>Saccharomyces cerevisiae</i> . Genetics, 2021, 218, .	2.9	5
3	Proteomic analysis of microtubule inner proteins (MIPs) in Rib72 null <i>Tetrahymena</i> cells reveals functional MIPs. Molecular Biology of the Cell, 2021, 32, br8.	2.1	13
4	Yeast pericentrin/Spc110 contains multiple domains required for tethering the Î ³ -tubulin complex to the centrosome. Molecular Biology of the Cell, 2020, 31, 1437-1452.	2.1	2
5	<i>Tetrahymena</i> Poc5 is a transient basal body component that is important for basal body maturation. Journal of Cell Science, 2020, 133, .	2.0	6
6	Microtubule glycylation promotes basal body attachment to the cell cortex. Journal of Cell Science, 2019, 132, .	2.0	17
7	Motile Cilia: Innovation and Insight From Ciliate Model Organisms. Frontiers in Cell and Developmental Biology, 2019, 7, 265.	3.7	28
8	Key phosphorylation events in Spc29 and Spc42 guide multiple steps of yeast centrosome duplication. Molecular Biology of the Cell, 2018, 29, 2280-2291.	2.1	3
9	<i>Tetrahymena</i> RIB72A and RIB72B are microtubule inner proteins in the ciliary doublet microtubules. Molecular Biology of the Cell, 2018, 29, 2566-2577.	2.1	47
10	Building Cell Structures in Three Dimensions: Electron Tomography Methods for Budding Yeast. Cold Spring Harbor Protocols, 2017, 2017, pdb.top077685.	0.3	0
11	Cryopreparation and Electron Tomography of Yeast Cells. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot085589.	0.3	1
12	The molecular architecture of the yeast spindle pole body core determined by Bayesian integrative modeling. Molecular Biology of the Cell, 2017, 28, 3298-3314.	2.1	44
13	Sfr1, a Tetrahymena thermophila Sfi1 Repeat Protein, Modulates the Production of Cortical Row Basal Bodies. MSphere, 2016, 1, .	2.9	4
14	<i>Tetrahymena</i> Poc1 ensures proper intertriplet microtubule linkages to maintain basal body integrity. Molecular Biology of the Cell, 2016, 27, 2394-2403.	2.1	29
15	Identifying domains of EFHC1 involved in ciliary localization, ciliogenesis, and the regulation of Wnt signaling. Developmental Biology, 2016, 411, 257-265.	2.0	16
16	Centrin-2 (Cetn2) mediated regulation of FGF/FGFR gene expression in Xenopus. Scientific Reports, 2015, 5, 10283.	3.3	14
17	Structured illumination with particle averaging reveals novel roles for yeast centrosome components during duplication. ELife, 2015, 4, .	6.0	64
18	Interaction of CK1δ with γTuSC ensures proper microtubule assembly and spindle positioning. Molecular Biology of the Cell, 2015, 26, 2505-2518.	2.1	27

MARK WINEY

#	Article	IF	CITATIONS
19	The kinetochore protein, <i>CENPF</i> , is mutated in human ciliopathy and microcephaly phenotypes. Journal of Medical Genetics, 2015, 52, 147-156.	3.2	75
20	Membrane Dynamics at the Nuclear Exchange Junction during Early Mating (One to Four Hours) in the Ciliate Tetrahymena thermophila. Eukaryotic Cell, 2015, 14, 116-127.	3.4	14
21	Chromosomal attachments set length and microtubule number in the <i>Saccharomyces cerevisiae</i> mitotic spindle. Molecular Biology of the Cell, 2014, 25, 4034-4048.	2.1	28
22	Licensing of Yeast Centrosome Duplication Requires Phosphoregulation of Sfi1. PLoS Genetics, 2014, 10, e1004666.	3.5	37
23	Conventional transmission electron microscopy. Molecular Biology of the Cell, 2014, 25, 319-323.	2.1	155
24	Centriole structure. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130457.	4.0	101
25	Chibby functions in Xenopus ciliary assembly, embryonic development, and the regulation of gene expression. Developmental Biology, 2014, 395, 287-298.	2.0	22
26	Sfr13 is a member of a large family of asymmetrically 1 localized Sfi1-repeat proteins and is important for basal body separation and stability in <i>Tetrahymena thermophila</i> . Journal of Cell Science, 2013, 126, 1659-71.	2.0	14
27	Cytological Analysis of Tetrahymena thermophila. Methods in Cell Biology, 2012, 109, 357-378.	1.1	17
28	The two human centrin homologues have similar but distinct functions at Tetrahymena basal bodies. Molecular Biology of the Cell, 2012, 23, 4766-4777.	2.1	17
29	Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces. Molecular Biology of the Cell, 2012, 23, 4820-4832.	2.1	62
30	Mitotic Spindle Form and Function. Genetics, 2012, 190, 1197-1224.	2.9	115
31	The MPS1 Family of Protein Kinases. Annual Review of Biochemistry, 2012, 81, 561-585.	11.1	179
32	The two domains of centrin have distinct basal body functions in <i>Tetrahymena</i> . Molecular Biology of the Cell, 2011, 22, 2221-2234.	2.1	31
33	Ubiquitin Ligase Ufd2 Is Required for Efficient Degradation of Mps1 Kinase. Journal of Biological Chemistry, 2011, 286, 43660-43667.	3.4	22
34	Electron Tomography and Immuno-labeling of Tetrahymena thermophila Basal Bodies. Methods in Cell Biology, 2010, 96, 117-141.	1.1	26
35	Basal body stability and ciliogenesis requires the conserved component Poc1. Journal of Cell Biology, 2009, 187, 905-920.	5.2	115
36	The Two SAS-6 Homologs in <i>Tetrahymena thermophila</i> Have Distinct Functions in Basal Body Assembly. Molecular Biology of the Cell, 2009, 20, 1865-1877.	2.1	49

MARK WINEY

#	Article	IF	CITATIONS
37	Basal Body Assembly in Ciliates: The Power of Numbers. Traffic, 2009, 10, 461-471.	2.7	57
38	High Pressure Freezing, Electron Microscopy, and Immuno-Electron Microscopy of Tetrahymena thermophila Basal Bodies. Methods in Molecular Biology, 2009, 586, 227-241.	0.9	26
39	New <i>Tetrahymena</i> basal body protein components identify basal body domain structure. Journal of Cell Biology, 2007, 178, 905-912.	5.2	157
40	Anaphase Inactivation of the Spindle Checkpoint. Science, 2006, 313, 680-684.	12.6	118
41	The Budding Yeast Spindle Pole Body: A Centrosome Analog. , 2005, , 43-69.		1
42	Three-dimensional Ultrastructure of Saccharomyces cerevisiae Meiotic Spindles. Molecular Biology of the Cell, 2005, 16, 1178-1188.	2.1	48
43	Basal Body Duplication and Maintenance Require One Member of the Tetrahymena thermophila Centrin Gene Family. Molecular Biology of the Cell, 2005, 16, 3606-3619.	2.1	90
44	THE BUDDING YEAST SPINDLE POLE BODY: Structure, Duplication, and Function. Annual Review of Cell and Developmental Biology, 2004, 20, 1-28.	9.4	256
45	The yeast protein kinase Mps1p is required for assembly of the integral spindle pole body component Spc42p. Journal of Cell Biology, 2002, 156, 453-465.	5.2	60
46	Centrosomes and checkpoints: the MPS1 family of kinases. Oncogene, 2002, 21, 6161-6169.	5.9	55
47	Multi-step control of spindle pole body duplication by cyclin-dependent kinase. Nature Cell Biology, 2001, 3, 38-42.	10.3	89
48	Yeast Mps1p Phosphorylates the Spindle Pole Component Spc110p in the N-terminal Domain. Journal of Biological Chemistry, 2001, 276, 17958-17967.	3.4	28
49	Novel Role for a <i>Saccharomyces cerevisiae</i> Nucleoporin, Nup170p, in Chromosome Segregation. Genetics, 2001, 157, 1543-1553.	2.9	48
50	Mechanisms of genetic instability revealed by analysis of yeast spindle pole body duplication. Biology of the Cell, 1999, 91, 439-450.	2.0	16
51	Mechanisms of genetic instability revealed by analysis of yeast spindle pole body duplication. Biology of the Cell, 1999, 91, 439-450.	2.0	3
52	New Alleles of the YeastMPS1Gene Reveal Multiple Requirements in Spindle Pole Body Duplication. Molecular Biology of the Cell, 1998, 9, 759-774.	2.1	57
53	<i>MOB1</i> , an Essential Yeast Gene Required for Completion of Mitosis and Maintenance of Ploidy. Molecular Biology of the Cell, 1998, 9, 29-46.	2.1	156
54	DBF2 Protein Kinase Binds to and Acts through the Cell Cycle-Regulated MOB1 Protein. Molecular and Cellular Biology, 1998, 18, 2100-2107.	2.3	98