
## **Bethan Purse**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/67139/publications.pdf Version: 2024-02-01



RETHAN DUDGE

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Climate change and the recent emergence of bluetongue in Europe. Nature Reviews Microbiology, 2005, 3, 171-181.                                                                                        | 28.6 | 669       |
| 2  | Global Data for Ecology and Epidemiology: A Novel Algorithm for Temporal Fourier Processing MODIS<br>Data. PLoS ONE, 2008, 3, e1408.                                                                   | 2.5  | 218       |
| 3  | Bionomics of Temperate and Tropical <i>Culicoides</i> Midges: Knowledge Gaps and Consequences for<br>Transmission of <i>Culicoides</i> Borne Viruses. Annual Review of Entomology, 2015, 60, 373-392.  | 11.8 | 190       |
| 4  | Global trade networks determine the distribution of invasive nonâ€native species. Global Ecology and<br>Biogeography, 2017, 26, 907-917.                                                               | 5.8  | 177       |
| 5  | Culicoides biting midges, arboviruses and public health in Europe. Antiviral Research, 2013, 100, 102-113.                                                                                             | 4.1  | 173       |
| 6  | Modelling the effect of temperature on the seasonal population dynamics of temperate mosquitoes.<br>Journal of Theoretical Biology, 2016, 400, 65-79.                                                  | 1.7  | 126       |
| 7  | Can the enemy release hypothesis explain the success of invasive alien predators and parasitoids?.<br>BioControl, 2011, 56, 451-468.                                                                   | 2.0  | 122       |
| 8  | Mapping the basic reproduction number (R0) for vector-borne diseases: A case study on bluetongue virus. Epidemics, 2009, 1, 153-161.                                                                   | 3.0  | 115       |
| 9  | Alien Pathogens on the Horizon: Opportunities for Predicting their Threat to Wildlife. Conservation<br>Letters, 2017, 10, 477-484.                                                                     | 5.7  | 96        |
| 10 | Prediction of bluetongue vector distribution in Europe and north Africa using satellite imagery.<br>Veterinary Microbiology, 2003, 97, 13-29.                                                          | 1.9  | 93        |
| 11 | Fast and flexible Bayesian species distribution modelling using Gaussian processes. Methods in Ecology and Evolution, 2016, 7, 598-608.                                                                | 5.2  | 87        |
| 12 | Modelling the distributions of Culicoides bluetongue virus vectors in Sicily in relation to satellite-derived climate variables. Medical and Veterinary Entomology, 2004, 18, 90-101.                  | 1.5  | 79        |
| 13 | A new algorithm quantifies the roles of wind and midge flight activity in the bluetongue epizootic in northwest Europe. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2354-2362. | 2.6  | 74        |
| 14 | Dispersal characteristics and management of a rare damselfly. Journal of Applied Ecology, 2003, 40, 716-728.                                                                                           | 4.0  | 73        |
| 15 | Quantifying the wind dispersal of Culicoides species in Greece and Bulgaria. Geospatial Health, 2007, 1, 177.                                                                                          | 0.8  | 73        |
| 16 | Spatial distribution of Culicoides species in Portugal in relation to the transmission of African horse sickness and bluetongue viruses. Medical and Veterinary Entomology, 2003, 17, 165-177.         | 1.5  | 68        |
| 17 | Spatial distribution of bluetongue virus and its Culicoides vectors in Sicily. Medical and Veterinary<br>Entomology, 2004, 18, 81-89.                                                                  | 1.5  | 64        |
| 18 | Larval development and emergence sites of farmâ€associated <i>Culicoides</i> in the United Kingdom.<br>Medical and Veterinary Entomology, 2013, 27, 441-449.                                           | 1.5  | 64        |

| #  | Article                                                                                                                                                                                  | IF                | CITATIONS     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 19 | Impacts of climate, host and landscape factors on <i>Culicoides</i> species in Scotland. Medical and Veterinary Entomology, 2012, 26, 168-177.                                           | 1.5               | 56            |
| 20 | West Nile virus vector Culex modestus established in southern England. Parasites and Vectors, 2012, 5, 32.                                                                               | 2.5               | 54            |
| 21 | Towards a resourceâ€based habitat approach for spatial modelling of vectorâ€borne disease risks.<br>Biological Reviews, 2015, 90, 1151-1162.                                             | 10.4              | 50            |
| 22 | Spatial and temporal distribution of bluetongue and its Culicoides vectors in Bulgaria. Medical and Veterinary Entomology, 2006, 20, 335-344.                                            | 1.5               | 49            |
| 23 | Geographical and seasonal distribution of the bluetongue virus vector, Culicoides imicola, in central<br>Italy. Medical and Veterinary Entomology, 2003, 17, 388-394.                    | 1.5               | 48            |
| 24 | Trade-off in ecosystem services of the Somerset Levels and Moors wetlands. Hydrological Sciences<br>Journal, 2011, 56, 1543-1565.                                                        | 2.6               | 47            |
| 25 | Incriminating bluetongue virus vectors with climate envelope models. Journal of Applied Ecology, 2007, 44, 1231-1242.                                                                    | 4.0               | 43            |
| 26 | Impacts of space, local environment and habitat connectivity on macrophyte communities in conservation lakes. Diversity and Distributions, 2012, 18, 603-614.                            | 4.1               | 43            |
| 27 | Escape from parasitism by the invasive alien ladybird, <i>Harmonia axyridis</i> . Insect Conservation and Diversity, 2014, 7, 334-342.                                                   | 3.0               | 38            |
| 28 | Landscape and climate determine patterns of spread for all colour morphs of the alien ladybird<br>Harmonia axyridis. Journal of Biogeography, 2015, 42, 575-588.                         | 3.0               | 38            |
| 29 | How will climate change pathways and mitigation options alter incidence of vector-borne diseases? A framework for leishmaniasis in South and Meso-America. PLoS ONE, 2017, 12, e0183583. | 2.5               | 37            |
| 30 | Tracking the distribution and impacts of diseases with biological records and distribution modelling.<br>Biological Journal of the Linnean Society, 2015, 115, 664-677.                  | 1.6               | 36            |
| 31 | DNA barcoding and surveillance sampling strategies for Culicoides biting midges (Diptera:) Tj ETQq1 1 0.78431                                                                            | 4 rgBT /0\<br>2.5 | verlock 10 Tf |
| 32 | Community versus single-species distribution models for British plants. Journal of Biogeography, 2011, 38, 1524-1535.                                                                    | 3.0               | 35            |
| 33 | Environmental Drivers of Culicoides Phenology: How Important Is Species-Specific Variation When Determining Disease Policy?. PLoS ONE, 2014, 9, e111876.                                 | 2.5               | 35            |
| 34 | Identifying biotic interactions which drive the spatial distribution of a mosquito community.<br>Parasites and Vectors, 2015, 8, 367.                                                    | 2.5               | 35            |
| 35 | Lyme Disease Risks in Europe under Multiple Uncertain Drivers of Change. Environmental Health<br>Perspectives, 2019, 127, 67010.                                                         | 6.0               | 35            |
| 36 | Using biological traits to explain ladybird distribution patterns. Journal of Biogeography, 2012, 39,<br>1772-1781.                                                                      | 3.0               | 31            |

| #  | Article                                                                                                                                                                                              | IF               | CITATIONS            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|
| 37 | Identifying environmental drivers of insect phenology across space and time: <i>Culicoides</i> in<br>Scotland as a case study. Bulletin of Entomological Research, 2013, 103, 155-170.               | 1.0              | 31                   |
| 38 | Predicting disease risk areas through co-production of spatial models: The example of Kyasanur<br>Forest Disease in India's forest landscapes. PLoS Neglected Tropical Diseases, 2020, 14, e0008179. | 3.0              | 31                   |
| 39 | Collection ofCulicoides(Diptera: Ceratopogonidae) Using CO2and Enantiomers of 1-Octen-3-ol in the<br>United Kingdom. Journal of Medical Entomology, 2012, 49, 112-121.                               | 1.8              | 30                   |
| 40 | Ecological correlates of local extinction and colonisation in the British ladybird beetles (Coleoptera: Coccinellidae). Biological Invasions, 2014, 16, 1805-1817.                                   | 2.4              | 30                   |
| 41 | Clarity or confusion? – Problems in attributing large-scale ecological changes to anthropogenic drivers. Ecological Indicators, 2012, 20, 51-56.                                                     | 6.3              | 29                   |
| 42 | Operationalising the "One Health―approach in India: facilitators of and barriers to effective<br>cross-sector convergence for zoonoses prevention and control. BMC Public Health, 2021, 21, 1517.    | 2.9              | 28                   |
| 43 | Emergence of the damselflies, Coenagrion mercuriale and Ceriagrion tenellum (Odonata:) Tj ETQq1 1 0.784314 100, 93-99.                                                                               | rgBT /Ove<br>1.2 | erlock 10 Tf 5<br>27 |
| 44 | Predicting the risk of bluetongue through time: climate model of temporal patterns of outbreaks in<br>Istrael. OIE Revue Scientifique Et Technique, 2004, 23, 761-775.                               | 1.2              | 27                   |
| 45 | Flexibility in phenology and habitat use act as buffers to longâ€ŧerm population declines in UK<br>passerines. Ecography, 2012, 35, 604-613.                                                         | 4.5              | 24                   |
| 46 | Evolutionary traitâ€based approaches for predicting future global impacts of plant pathogens in the genus <i>Phytophthora</i> . Journal of Applied Ecology, 2021, 58, 718-730.                       | 4.0              | 23                   |
| 47 | Two Species with an Unusual Combination of Traits Dominate Responses of British Grasshoppers and<br>Crickets to Environmental Change. PLoS ONE, 2015, 10, e0130488.                                  | 2.5              | 22                   |
| 48 | Epidemic potential of an emerging vector borne disease in a marginal environment: Schmallenberg in<br>Scotland. Scientific Reports, 2013, 3, 1178.                                                   | 3.3              | 21                   |
| 49 | Livestock host composition rather than land use or climate explains spatial patterns in bluetongue<br>disease in South India. Scientific Reports, 2019, 9, 4229.                                     | 3.3              | 20                   |
| 50 | Lifetime mating success in a marginal population of a damselfly, Coenagrion mercuriale. Animal<br>Behaviour, 2005, 69, 1303-1315.                                                                    | 1.9              | 19                   |
| 51 | Landscape and climate determine patterns of spread for all colour morphs of the alien ladybird<br>Harmonia axyridis. Journal of Biogeography, 2015, 42, 575-588.                                     | 3.0              | 19                   |
| 52 | Uncovering mechanisms behind mosquito seasonality by integrating mathematical models and daily empirical population data: Culex pipiens in the UK. Parasites and Vectors, 2019, 12, 74.              | 2.5              | 18                   |
| 53 | Using biological traits to explain ladybird distribution patterns. Journal of Biogeography, 2012, 39, 1772-1781.                                                                                     | 3.0              | 18                   |
| 54 | PHYTO-THREATS: Addressing Threats to UK Forests and Woodlands from Phytophthora; Identifying<br>Risks of Spread in Trade and Methods for Mitigation. Forests, 2021, 12, 1617.                        | 2.1              | 18                   |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Challenges in predicting invasive reservoir hosts of emerging pathogens: mapping Rhododendron ponticum as a foliar host for Phytophthora ramorum and Phytophthora kernoviae in the UK.<br>Biological Invasions, 2013, 15, 529-545. | 2.4 | 17        |
| 56 | Does covering of farm-associated Culicoides larval habitat reduce adult populations in the United Kingdom?. Veterinary Parasitology, 2014, 201, 137-145.                                                                           | 1.8 | 17        |
| 57 | Impact of temperature, feeding preference and vaccination on Schmallenberg virus transmission in<br>Scotland. Scientific Reports, 2015, 4, 5746.                                                                                   | 3.3 | 17        |
| 58 | Ecological correlates of local extinction and colonisation in the British ladybird beetles (Coleoptera: Coccinellidae). Biological Invasions, 2014, 16, 1805-1817.                                                                 | 2.4 | 17        |
| 59 | Assessing the potential for Bluetongue virus 8 to spread and vaccination strategies in Scotland.<br>Scientific Reports, 2016, 6, 38940.                                                                                            | 3.3 | 16        |
| 60 | Quantifying the Risk of Introduction of West Nile Virus into Great Britain by Migrating Passerine<br>Birds. Transboundary and Emerging Diseases, 2016, 63, e347-e359.                                                              | 3.0 | 16        |
| 61 | A novel approach for predicting risk of vector-borne disease establishment in marginal temperate<br>environments under climate change: West Nile virus in the UK. Journal of the Royal Society Interface,<br>2021, 18, 20210049.   | 3.4 | 16        |
| 62 | Oviposition site selection by <i>Coenagrion mercuriale</i> (Odonata: Coenagrionidae). International<br>Journal of Odonatology, 2009, 12, 257-273.                                                                                  | 0.5 | 15        |
| 63 | Mechanistic model for predicting the seasonal abundance of Culicoides biting midges and the impacts of insecticide control. Parasites and Vectors, 2017, 10, 162.                                                                  | 2.5 | 15        |
| 64 | †None of my ancestors ever discussed this disease before!' How disease information shapes adaptive capacity of marginalised rural populations in India. PLoS Neglected Tropical Diseases, 2021, 15, e0009265.                      | 3.0 | 15        |
| 65 | Reviewing the ecological evidence base for management of emerging tropical zoonoses: Kyasanur<br>Forest Disease in India as a case study. PLoS Neglected Tropical Diseases, 2021, 15, e0009243.                                    | 3.0 | 15        |
| 66 | The tree that hides the forest: cryptic diversity and phylogenetic relationships in the Palaearctic vector Obsoletus/Scoticus Complex (Diptera: Ceratopogonidae) at the European level. Parasites and Vectors, 2020, 13, 265.      | 2.5 | 15        |
| 67 | Understanding Spatio-Temporal Variability in the Reproduction Ratio of the Bluetongue (BTV-1)<br>Epidemic in Southern Spain (Andalusia) in 2007 Using Epidemic Trees. PLoS ONE, 2016, 11, e0151151.                                | 2.5 | 14        |
| 68 | Phenotypic plasticity as a cause and consequence of population dynamics. Ecology Letters, 2021, 24, 2406-2417.                                                                                                                     | 6.4 | 14        |
| 69 | Habitat use governs distribution patterns of saprophagous (litter-transforming) macroarthropods - a<br>case study of British woodlice (Isopoda: Oniscidea). European Journal of Entomology, 2012, 109,<br>543-552.                 | 1.2 | 14        |
| 70 | Voltinism and larval growth pattern in Coenagrion mercuriale (Odonata: Coenagrionidae) at its northern range margin. European Journal of Entomology, 2002, 99, 11-18.                                                              | 1.2 | 13        |
| 71 | Small scale variability in soil moisture drives infection of vulnerable juniper populations by invasive forest pathogen. Forest Ecology and Management, 2020, 473, 118324.                                                         | 3.2 | 11        |
| 72 | Transmission of Schmallenberg virus in a housed dairy herd in the UK. Veterinary Record, 2013, 173, 609-609.                                                                                                                       | 0.3 | 10        |

| #  | Article                                                                                                                                                                                                       | IF               | CITATIONS        |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
| 73 | A call to arms: Setting the framework for a code of practice for mosquito management in European wetlands. Journal of Applied Ecology, 2020, 57, 1012-1019.                                                   | 4.0              | 10               |
| 74 | Bluetongue virus and climate change. , 2009, , 343-364.                                                                                                                                                       |                  | 7                |
| 75 | Patterns in <i><scp>V</scp>arroa destructor</i> depend on bee host abundance, availability of natural resources, and climate in <scp>M</scp> editerranean apiaries. Ecological Entomology, 2016, 41, 542-553. | 2.2              | 4                |
| 76 | Bluetongue in the Mediterranean: prediction of risk in space and time. , 0, , 125-136.                                                                                                                        |                  | 4                |
| 77 | Co-production of knowledge as part of a OneHealth approach to better control zoonotic diseases.<br>PLOS Global Public Health, 2022, 2, e0000075.                                                              | 1.6              | 3                |
| 78 | Investigating the Role of Restoration Plantings in Introducing Disease—A Case Study Using<br>Phytophthora. Forests, 2021, 12, 764.                                                                            | 2.1              | 2                |
| 79 | Environmental Drivers of Adult Seasonality and Abundance of Biting Midges Culicoides (Diptera:) Tj ETQq1 1 0.78<br>350-364.                                                                                   | 4314 rgBT<br>1.8 | /Overlock ]<br>1 |
| 80 | Title is missing!. , 2020, 14, e0008179.                                                                                                                                                                      |                  | 0                |
| 81 | Title is missing!. , 2020, 14, e0008179.                                                                                                                                                                      |                  | 0                |
| 82 | Title is missing!. , 2020, 14, e0008179.                                                                                                                                                                      |                  | 0                |
| 83 | Title is missing!. , 2020, 14, e0008179.                                                                                                                                                                      |                  | 0                |
| 84 | Title is missing!. , 2020, 14, e0008179.                                                                                                                                                                      |                  | 0                |
| 85 | Title is missing!. , 2020, 14, e0008179.                                                                                                                                                                      |                  | 0                |