
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/671288/publications.pdf Version: 2024-02-01

MOSHELEVI

#	Article	IF	CITATIONS
1	Discovery of JND003 as a New Selective Estrogen-Related Receptor α Agonist Alleviating Nonalcoholic Fatty Liver Disease and Insulin Resistance. ACS Bio & Med Chem Au, 2022, 2, 282-296.	3.7	4
2	Enhanced phosphate absorption in intestinal epithelial cellâ€specific NHE3 knockout mice. Acta Physiologica, 2022, 234, e13756.	3.8	11
3	Gene repression through epigenetic modulation by PPARA enhances hepatocellular proliferation. IScience, 2022, 25, 104196.	4.1	15
4	Prevention and regression of megamitochondria and steatosis by blocking mitochondrial fusion in the liver. IScience, 2022, 25, 103996.	4.1	19
5	Obeticholic Acid Prevents Fibrosis in a Model of Tubulointerstitial Kidney Disease. FASEB Journal, 2022, 36, .	0.5	0
6	Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice. International Journal of Molecular Sciences, 2022, 23, 5675.	4.1	5
7	PodoCount: A Robust, Fully Automated, Whole-Slide Podocyte Quantification Tool. Kidney International Reports, 2022, 7, 1377-1392.	0.8	7
8	Sphingosine kinase 1 mediates sexual dimorphism in fibrosis in a mouse model of NASH. Molecular Metabolism, 2022, 62, 101523.	6.5	5
9	Heart Failure: An Underappreciated Complication of Diabetes. A Consensus Report of the American Diabetes Association. Diabetes Care, 2022, 45, 1670-1690.	8.6	109
10	Nuclear receptors in the kidney during health and disease. Molecular Aspects of Medicine, 2021, 78, 100935.	6.4	28
11	Advances in fluorescence microscopy techniques to study kidney function. Nature Reviews Nephrology, 2021, 17, 128-144.	9.6	33
12	Constitutive depletion of Slc34a2/NaPi-IIb in rats causes perinatal mortality. Scientific Reports, 2021, 11, 7943.	3.3	2
13	Sacubitril/valsartan treatment has differential effects in modulating diabetic kidney disease in <i>db/db</i> mice and KKAy mice compared with valsartan treatment. American Journal of Physiology - Renal Physiology, 2021, 320, F1133-F1151.	2.7	20
14	Feedback repression of PPARα signaling by Let-7 microRNA. Cell Reports, 2021, 36, 109506.	6.4	12
15	Adenovirus transduction to express human ACE2 causes obesity-specific morbidity in mice, impeding studies on the effect of host nutritional status on SARS-CoV-2 pathogenesis. Virology, 2021, 563, 98-106.	2.4	6
16	Introduction: Obesity and the kidney. Seminars in Nephrology, 2021, 41, 295.	1.6	0
17	Nuclear Receptors and Transcription Factors in Obesity-Related Kidney Disease. Seminars in Nephrology, 2021, 41, 318-330.	1.6	3
18	Low Dose Chronic Angiotensin II Induces Selective Senescence of Kidney Endothelial Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 782841.	3.7	8

#	Article	IF	CITATIONS
19	Morphological and functional characteristics of aging kidneys based on twoâ€photon microscopy in vivo. Journal of Biophotonics, 2020, 13, e201900246.	2.3	4
20	Long non-coding RNA Gm15441 attenuates hepatic inflammasome activation in response to PPARA agonism and fasting. Nature Communications, 2020, 11, 5847.	12.8	52
21	Phasor approach to autofluorescence lifetime imaging FLIM can be a quantitative biomarker of chronic renal parenchymal injury. Kidney International, 2020, 98, 1341-1346.	5.2	2
22	Characterizing the Retinal Phenotype in the High-Fat Diet and Western Diet Mouse Models of Prediabetes. Cells, 2020, 9, 464.	4.1	31
23	Bile acid sequestration reverses liver injury and prevents progression of nonalcoholic steatohepatitis in Western diet–fed mice. Journal of Biological Chemistry, 2020, 295, 4733-4747.	3.4	37
24	An in Situ Atlas of Mitochondrial DNA in Mammalian Tissues Reveals High Content in StemÂand Proliferative Compartments. American Journal of Pathology, 2020, 190, 1565-1579.	3.8	21
25	Learning the ABCs of ATP release. Journal of Biological Chemistry, 2020, 295, 5204-5205.	3.4	1
26	Mechanisms of phosphate transport. Nature Reviews Nephrology, 2019, 15, 482-500.	9.6	99
27	Hepatocyte peroxisome proliferator-activated receptor α regulates bile acid synthesis and transport. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1396-1411.	2.4	33
28	Chronic kidney disease and aging differentially diminish bone material and microarchitecture in C57Bl/6 mice. Bone, 2019, 127, 91-103.	2.9	37
29	Fully automated analysis of OCT imaging of human kidneys for prediction of post-transplant function. Biomedical Optics Express, 2019, 10, 1794.	2.9	12
30	Inhibition of 5-lipoxygenase decreases renal fibrosis and progression of chronic kidney disease. American Journal of Physiology - Renal Physiology, 2019, 316, F732-F742.	2.7	13
31	Visualizing the regulation of SLC34 proteins at the apical membrane. Pflugers Archiv European Journal of Physiology, 2019, 471, 533-542.	2.8	3
32	Identification and expression analysis of type II and type III P _i transporters in the opossum kidney cell line. Experimental Physiology, 2019, 104, 149-161.	2.0	7
33	Intestinal Response to Acute Intragastric and Intravenous Administration of Phosphate in Rats. Cellular Physiology and Biochemistry, 2019, 52, 838-849.	1.6	5
34	Pyrroloquinoline quinone prevents developmental programming of microbial dysbiosis and macrophage polarization to attenuate liver fibrosis in offspring of obese mice. Hepatology Communications, 2018, 2, 313-328.	4.3	44
35	Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in <i>db/db</i> Mice. Diabetes, 2018, 67, 1867-1879.	0.6	243
36	SRGAP2a: A New Player That Modulates Podocyte Cytoskeleton and Injury in Diabetes. Diabetes, 2018, 67, 550-551.	0.6	3

#	Article	IF	CITATIONS
37	Bile acid receptors and the kidney. Current Opinion in Nephrology and Hypertension, 2018, 27, 56-62.	2.0	47
38	FXR/TGR5 Dual Agonist Prevents Progression of Nephropathy in Diabetes and Obesity. Journal of the American Society of Nephrology: JASN, 2018, 29, 118-137.	6.1	133
39	Intravital imaging of adriamycin-induced renal pathology using two-photon microscopy and optical coherence tomography. Journal of Innovative Optical Health Sciences, 2018, 11, .	1.0	5
40	Bile Acid G Protein-Coupled Membrane Receptor TGR5 Modulates Aquaporin 2–Mediated Water Homeostasis. Journal of the American Society of Nephrology: JASN, 2018, 29, 2658-2670.	6.1	38
41	Simultaneous inhibition of FXR and TGR5 exacerbates atherosclerotic formation. Journal of Lipid Research, 2018, 59, 1709-1713.	4.2	44
42	The Sodium-Glucose Cotransporter 2 Inhibitor Dapagliflozin Prevents Renal and Liver Disease in Western Diet Induced Obesity Mice. International Journal of Molecular Sciences, 2018, 19, 137.	4.1	64
43	Bile Acid Membrane Receptor TGR5 Regulates Renal AQP2 and Improves Lithiuminduced NDI. FASEB Journal, 2018, 32, .	0.5	0
44	Regulation of Intestinal Phosphate Transport in Humans and in a Rat Model of Chronic Kidney Disease. FASEB Journal, 2018, 32, 750.17.	0.5	0
45	SIRT3 Activation Inhibits Development of Diabetic Kidney Disease. FASEB Journal, 2018, 32, 670.17.	0.5	1
46	SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy. Journal of Biological Chemistry, 2017, 292, 5335-5348.	3.4	231
47	Intestinal phosphate absorption is mediated by multiple transport systems in rats. American Journal of Physiology - Renal Physiology, 2017, 312, G355-G366.	3.4	36
48	A dual agonist of farnesoid X receptor (FXR) and the G protein–coupled receptor TGR5, INT-767, reverses age-related kidney disease in mice. Journal of Biological Chemistry, 2017, 292, 12018-12024.	3.4	47
49	Aliskiren increases aquaporin-2 expression and attenuates lithium-induced nephrogenic diabetes insipidus. American Journal of Physiology - Renal Physiology, 2017, 313, F914-F925.	2.7	10
50	Early PQQ supplementation has persistent longâ€ŧerm protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice. FASEB Journal, 2017, 31, 1434-1448.	0.5	45
51	Serelaxin improves cardiac and renal function in DOCA-salt hypertensive rats. Scientific Reports, 2017, 7, 9793.	3.3	29
52	The Mechanism of Diabetic Retinopathy Pathogenesis Unifying Key Lipid Regulators, Sirtuin 1 and Liver X Receptor. EBioMedicine, 2017, 22, 181-190.	6.1	48
53	Measuring the effect of a Western diet on liver tissue architecture by FLIM autofluorescence and harmonic generation microscopy. Biomedical Optics Express, 2017, 8, 3143.	2.9	32
54	Spaceflight Activates Lipotoxic Pathways in Mouse Liver. PLoS ONE, 2016, 11, e0152877.	2.5	69

#	Article	IF	CITATIONS
55	Characterizing fibrosis in UUO mice model using multiparametric analysis of phasor distribution from FLIM images. Biomedical Optics Express, 2016, 7, 3519.	2.9	33
56	Role of Bile Acid–Regulated Nuclear Receptor FXR and G Protein–Coupled Receptor TGR5 in Regulation of Cardiorenal Syndrome (Cardiovascular Disease and Chronic Kidney Disease). Hypertension, 2016, 67, 1080-1084.	2.7	17
57	Label-free fluorescence lifetime and second harmonic generation imaging microscopy improves quantification of experimental renalÂfibrosis. Kidney International, 2016, 90, 1123-1128.	5.2	58
58	Sevelamer Improves Steatohepatitis, Inhibits Liver and Intestinal Farnesoid X Receptor (FXR), and Reverses Innate Immune Dysregulation in a Mouse Model of Non-alcoholic Fatty Liver Disease. Journal of Biological Chemistry, 2016, 291, 23058-23067.	3.4	33
59	Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nature Reviews Nephrology, 2016, 12, 453-471.	9.6	461
60	Intrarenal renin-angiotensin system mediates fatty acid-induced ER stress in the kidney. American Journal of Physiology - Renal Physiology, 2016, 310, F351-F363.	2.7	54
61	G Protein-Coupled Bile Acid Receptor TGR5 Activation Inhibits Kidney Disease in Obesity and Diabetes. Journal of the American Society of Nephrology: JASN, 2016, 27, 1362-1378.	6.1	140
62	Imaging Fibrosis and Separating Collagens using Second Harmonic Generation and Phasor Approach to Fluorescence Lifetime Imaging. Scientific Reports, 2015, 5, 13378.	3.3	79
63	Aliskiren restores renal AQP2 expression during unilateral ureteral obstruction by inhibiting the inflammasome. American Journal of Physiology - Renal Physiology, 2015, 308, F910-F922.	2.7	42
64	Estrogen directly and specifically downregulates NaPi-IIa through the activation of both estrogen receptor isoforms (ERα and ERβ) in rat kidney proximal tubule. American Journal of Physiology - Renal Physiology, 2015, 308, F522-F534.	2.7	16
65	Renal Control of Calcium, Phosphate, and Magnesium Homeostasis. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 1257-1272.	4.5	523
66	Intestinal Phosphate Regulation in Chronic Kidney Disease FASEB Journal, 2015, 29, 969.10.	0.5	0
67	Protective effects of aliskiren and valsartan in mice with diabetic nephropathy. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2014, 15, 384-395.	1.7	31
68	Na ⁺ -independent phosphate transport in Caco2BBE cells. American Journal of Physiology - Cell Physiology, 2014, 307, C1113-C1122.	4.6	19
69	Renal Phosphate Wasting in the Absence of Adenylyl Cyclase 6. Journal of the American Society of Nephrology: JASN, 2014, 25, 2822-2834.	6.1	24
70	Liver X receptors preserve renal glomerular integrity under normoglycaemia and in diabetes in mice. Diabetologia, 2014, 57, 435-446.	6.3	32
71	Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. Journal of Lipid Research, 2014, 55, 561-572.	4.2	405
72	Inorganic Phosphate Modulates the Expression of the NaPi-2a Transporter in thetrans-Golgi Network and the Interaction with PIST in the Proximal Tubule. BioMed Research International, 2013, 2013, 1-9.	1.9	13

#	Article	IF	CITATIONS
73	NHE3 Regulatory Factor 1 (NHERF1) Modulates Intestinal Sodium-dependent Phosphate Transporter (NaPi-2b) Expression in Apical Microvilli. Journal of Biological Chemistry, 2012, 287, 35047-35056.	3.4	39
74	Liver X Receptor Modulates Diabetic Retinopathy Outcome in a Mouse Model of Streptozotocin-Induced Diabetes. Diabetes, 2012, 61, 3270-3279.	0.6	62
75	Characterization of Cholesterol Crystals in Atherosclerotic Plaques Using Stimulated Raman Scattering and Second-Harmonic Generation Microscopy. Biophysical Journal, 2012, 102, 1988-1995.	0.5	140
76	NaPillb in rat enterocytes interacts with EBP50 and Shank2. FASEB Journal, 2012, 26, 1066.1.	0.5	0
77	Changes In The Expression Of Phosphate Transporters, Inflammatory Markers, and Bone Cytokines With Increasing Age. FASEB Journal, 2012, 26, 835.21.	0.5	Ο
78	Tracking of single microvilli to study regulation of the intestinal phosphate transporters. FASEB Journal, 2012, 26, .	0.5	0
79	Dynamic Imaging of the Sodium Phosphate Cotransporters. Advances in Chronic Kidney Disease, 2011, 18, 145-150.	1.4	5
80	Nuclear receptors in renal disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1061-1067.	3.8	30
81	Hypophosphatemia in vitamin D receptor null mice: effect of rescue diet on the developmental changes in renal Na+-dependent phosphate cotransporters. Pflugers Archiv European Journal of Physiology, 2011, 461, 77-90.	2.8	38
82	Nanometerâ€scale imaging by the modulation tracking method. Journal of Biophotonics, 2011, 4, 415-424.	2.3	20
83	Differential modulation of the molecular dynamics of the type IIa and IIc sodium phosphate cotransporters by parathyroid hormone. American Journal of Physiology - Cell Physiology, 2011, 301, C850-C861.	4.6	33
84	Kidney aging—inevitable or preventable?. Nature Reviews Nephrology, 2011, 7, 706-717.	9.6	67
85	Identification of cholesterol crystals in plaques of atherosclerotic mice using hyperspectral CARS imaging. Journal of Lipid Research, 2011, 52, 2177-2186.	4.2	108
86	Role of PDZK1 Protein in Apical Membrane Expression of Renal Sodium-coupled Phosphate Transporters. Journal of Biological Chemistry, 2011, 286, 15032-15042.	3.4	44
87	Liver X receptor-activating ligands modulate renal and intestinal sodium–phosphate transporters. Kidney International, 2011, 80, 535-544.	5.2	28
88	Vitamin D receptor agonist doxercalciferol modulates dietary fat-induced renal disease and renal lipid metabolism. American Journal of Physiology - Renal Physiology, 2011, 300, F801-F810.	2.7	75
89	Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice. Journal of Lipid Research, 2010, 51, 1729-1737.	4.2	68
90	Diabetic Nephropathy Is Accelerated by Farnesoid X Receptor Deficiency and Inhibited by Farnesoid X Receptor Activation in a Type 1 Diabetes Model. Diabetes, 2010, 59, 2916-2927.	0.6	149

#	Article	IF	CITATIONS
91	Functional Characterization of the Semisynthetic Bile Acid Derivative INT-767, a Dual Farnesoid X Receptor and TGR5 Agonist. Molecular Pharmacology, 2010, 78, 617-630.	2.3	164
92	Shank2 redistributes with NaPilla during regulated endocytosis. American Journal of Physiology - Cell Physiology, 2010, 299, C1324-C1334.	4.6	16
93	Nuclear hormone receptors in diabetic nephropathy. Nature Reviews Nephrology, 2010, 6, 342-351.	9.6	31
94	Effect of LXR on the Renal NaPi transporters. FASEB Journal, 2010, 24, 661.3.	0.5	0
95	Differential regulation of NaPi2a and NaPi2c by parathyroid hormone. FASEB Journal, 2010, 24, 606.30.	0.5	0
96	Nonlinear vibrational imaging of tissues. , 2009, , .		0
97	Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency. American Journal of Physiology - Renal Physiology, 2009, 297, F350-F361.	2.7	64
98	PTH-induced internalization of apical membrane NaPi2a: role of actin and myosin VI. American Journal of Physiology - Cell Physiology, 2009, 297, C1339-C1346.	4.6	47
99	The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria. American Journal of Physiology - Renal Physiology, 2009, 297, F1587-F1596.	2.7	147
100	Mouse Models of Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2009, 20, 2503-2512.	6.1	582
101	The Na ⁺ -P _i cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary P _i . American Journal of Physiology - Renal Physiology, 2009, 296, F691-F699.	2.7	149
102	Differential trafficking of NaPi2a and NaPi2c in response to PTH at the apical surface of renal proximal tubular cells. FASEB Journal, 2009, 23, .	0.5	0
103	Regulation of the rat intestinal phosphate transporters by dietary phosphate. FASEB Journal, 2009, 23, 796.34.	0.5	0
104	Regulation of the rat intestinal phosphate transporter NaPiâ€2b by dietary phosphate. FASEB Journal, 2008, 22, 813.3.	0.5	0
105	Microvillar protein trafficking and dynamics imaged by TIRF microscopy in living cells. FASEB Journal, 2008, 22, 652.1.	0.5	0
106	Partial LXR agonist reduces atherosclerosis in ApoEâ€deficient mice without inducing liver steatosis and hypertriglyceridemia. FASEB Journal, 2008, 22, 803.2.	0.5	1
107	Interaction of MAP17 with NHERF3/4 induces translocation of the renal Na/Pi IIa transporter to the trans-Golgi. American Journal of Physiology - Renal Physiology, 2007, 292, F230-F242.	2.7	48
108	Characterization of Phosphate Transport in Rat Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1030-1036.	2.4	117

#	Article	IF	CITATIONS
109	Farnesoid X Receptor Modulates Renal Lipid Metabolism, Fibrosis, and Diabetic Nephropathy. Diabetes, 2007, 56, 2485-2493.	0.6	206
110	Toxicity of phosphonoformic acid in vascular smooth muscle cells: relationship to vascular calcification. FASEB Journal, 2007, 21, A1244.	0.5	2
111	FXR Modulates Renal Lipid Metabolism and Fibrosis in Diabetic Nephropathy. FASEB Journal, 2007, 21, .	0.5	1
112	Mechanisms of inhibition of renal phosphate transport by phosphonoformate and arsenate. FASEB Journal, 2007, 21, A612.	0.5	0
113	Renal Phosphate–Wasting Disorders. Advances in Chronic Kidney Disease, 2006, 13, 155-165.	1.4	7
114	Regulation of Renal Fatty Acid and Cholesterol Metabolism, Inflammation, and Fibrosis in Akita and OVE26 Mice With Type 1 Diabetes. Diabetes, 2006, 55, 2502-2509.	0.6	255
115	Do statins have a beneficial effect on the kidney?. Nature Clinical Practice Nephrology, 2006, 2, 666-667.	2.0	5
116	Dietary saturated fats cause acute upregulation of transcriptional factors that modulate lipid synthetic pathways in the kidney. FASEB Journal, 2006, 20, A524.	0.5	0
117	Acute and chronic changes in cholesterol modulate Na-Pi cotransport activity in OK cells. American Journal of Physiology - Renal Physiology, 2005, 289, F154-F165.	2.7	30
118	Role of altered renal lipid metabolism and the sterol regulatory element binding proteins in the pathogenesis of age-related renal disease. Kidney International, 2005, 68, 2608-2620.	5.2	100
119	Shank2E binds NaPi cotransporter at the apical membrane of proximal tubule cells. American Journal of Physiology - Cell Physiology, 2005, 289, C1042-C1051.	4.6	28
120	Calorie Restriction Modulates Renal Expression of Sterol Regulatory Element Binding Proteins, Lipid Accumulation, and Age-Related Renal Disease. Journal of the American Society of Nephrology: JASN, 2005, 16, 2385-2394.	6.1	72
121	Regulation of Renal Lipid Metabolism, Lipid Accumulation, and Glomerulosclerosis in FVB <i>db/db</i> Mice With Type 2 Diabetes. Diabetes, 2005, 54, 2328-2335.	0.6	262
122	Diet-induced Obesity in C57BL/6J Mice Causes Increased Renal Lipid Accumulation and Glomerulosclerosis via a Sterol Regulatory Element-binding Protein-1c-dependent Pathway. Journal of Biological Chemistry, 2005, 280, 32317-32325.	3.4	307
123	Partitioning of NaPi Cotransporter in Cholesterol-, Sphingomyelin-, and Glycosphingolipid-enriched Membrane Domains Modulates NaPi Protein Diffusion, Clustering, and Activity. Journal of Biological Chemistry, 2004, 279, 49160-49171.	3.4	43
124	Spatial-Temporal Studies of Membrane Dynamics: Scanning Fluorescence Correlation Spectroscopy (SFCS). Biophysical Journal, 2004, 87, 1260-1267.	0.5	178
125	[14] Spectroscopy and microscopy of cells and cell membrane systems. Methods in Enzymology, 2003, 360, 330-345.	1.0	0
126	Role of Sterol Regulatory Element-binding Protein 1 in Regulation of Renal Lipid Metabolism and Glomerulosclerosis in Diabetes Mellitus. Journal of Biological Chemistry, 2002, 277, 18919-18927.	3.4	282

#	Article	IF	CITATIONS
127	Glycosphingolipids modulate renal phosphate transport in potassium deficiency. Kidney International, 2001, 60, 694-704.	5.2	35
128	Role of Thyroid Hormone in Regulation of Renal Phosphate Transport in Young and Aged Rats ¹ . Endocrinology, 1999, 140, 1544-1551.	2.8	87
129	Rapid downregulation of rat renal Na/Pi cotransporter in response to parathyroid hormone involves microtubule rearrangement. Journal of Clinical Investigation, 1999, 104, 483-494.	8.2	109
130	Regulation of renal phosphate transport by acute and chronic metabolic acidosis in the rat. Kidney International, 1998, 53, 1288-1298.	5.2	81
131	Renal brush border membrane Na/Pi-cotransport: Molecular aspects in PTH-dependent and dietary regulation. Kidney International, 1996, 49, 1769-1773.	5.2	63
132	Cellular mechanisms of the age-related decrease in renal phosphate reabsorption. Kidney International, 1996, 50, 855-863.	5.2	36
133	Maturational Effects of Glucocorticoids on Neonatal Brush-Border Membrane Phosphate Transport. Pediatric Research, 1994, 35, 474-478.	2.3	30
134	LIPID PHASES IN RENAL BRUSH BORDER MEMBRANES REVEALED BY LAURDAN FLUORESCENCE*. Photochemistry and Photobiology, 1993, 57, 420-425.	2.5	34
135	Role of Mitochondria in Ischemic Acute Renal Failure. Clinical and Experimental Dialysis and Apheresis, 1983, 7, 49-61.	0.1	6